Skip to main content
Log in

Terahertz single dual multi-band metamaterial absorber

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this study, a new multifunctional terahertz (THz) metamaterial absorber (MMA) has been presented which is controlled by the thickness of the substrate used. The proposed structure consists of copper as the ground plane and polyimide dielectric layer is placed in between the ground panel and the top radiating patch. The resonant frequency and number of resonating modes of the proposed absorber can be changed by varying the thickness of the substrate from 10 to 100 \(\mu \)m for the same planar structure. Depending on the thickness of the substrate, this MMA gives a narrow (10 \(\mu \)m), double (20 \(\mu \)m), triple (30 \(\mu \)m), quad (50 \(\mu \)m) and hexa (100 \(\mu \)m) number of resonating modes. In order to analyse the physical mechanism of the proposed absorber, we took 10, 20 and 30 \(\mu \)m-based MMA and their electric and magnetic field distributions are demonstrated. We compared the resonant frequency ranges and the number of bands with the previously reported papers. The polarisation and angle insensitivity of the design have been validated by numerical simulation up to 90\(^\circ \) of oblique incidence. The effects of variation in geometrical parameters and sensing habits have been studied in the narrow band (10 \(\mu \)m) MMA structure. The designed multifunctional absorber has the advantage of using the same MMA to produce multiple (narrow, double, triple, quad and hexa) band absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V G Veselago, Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  2. Q Zhang, Z Shen, J Wang and K S Lee, IEEE Antennas Wirel. Propag. Lett. 11, 1158 (2012)

    Article  ADS  Google Scholar 

  3. M Amiri, F Tofigh, N Shariati, J Lipman and M Abolhasan, IET Microw. Antennas Propag. 13, 991 (2019)

    Article  Google Scholar 

  4. H Wakatsuchi, J Paul and C Christopoulos, IEEE Trans. Antennas Propag. 60, 5743 (2012)

    Article  ADS  Google Scholar 

  5. D Liang, H Zhang, J Gu, Y Li, Z Tian, C Ouyang, J Han and W Zhang, IEEE J. Sel. Top. Quantum Electron. 23, 1 (2017)

    Google Scholar 

  6. O Fernández, A Gómez, A Vegas, G J Molina-Cuberos and A J García-Collado, IEEE Antennas Wirel. Propag. Lett. 2041 (2019)

  7. T A P Tran and P H Bolívar, IEEE Trans. Terahertz Sci. Tech. 8, 502 (2018)

    Article  ADS  Google Scholar 

  8. Y Liu, S Yoon, J R De Luis, F De Flaviis and N G Alexopoulos,IEEE Trans. Antennas Propag. 60, 5092 (2012)

    Article  ADS  Google Scholar 

  9. F Yi, H Zhu, J C Reed, A Y Zhu and E Cubukcu, IEEE Photon. Tech. Lett.  26, 202 (2014)

    Article  ADS  Google Scholar 

  10. K Du, Q Li, W Zhang, Y Yang and M Qiu, IEEE Photon. J. 71 (2015)

  11. S Saadeldin, M F O Hameed, E M A Elkaramany and S S A Obayya, IEEE Sens. J. 19, 7993

  12. J Ren, S Gong and W Jiang, IEEE Antennas Wirel. Propag. Lett. 17, 102 (2018)

    Article  ADS  Google Scholar 

  13. D Wang, Y Zhu, C Fang, P He and Y Ye, Appl. Opt. 58(26), 7035 (2019)

    Article  ADS  Google Scholar 

  14. B-X Wang, Q Xie, G Dong and W-Q Huang, J. Electron. Mater. 48, 2209 (2019)

    Article  ADS  Google Scholar 

  15. Y Luo, D Meng, Z Liang, J Tao, J Liang, C Chen, J Lai, T Bourouina, Y Qin, J Lv and Y Zhang, Opt. Commun. 459, 124948 (2020)

    Article  Google Scholar 

  16. H Luo, H Hu, Y Qiu and Zhou, Solid State Commun. 188, 5 (2014)

  17. Dayal, Govind and S A Ramakrishna, J. Opt. 15 (2013)

  18. N I Landy, S Sajuyigbe, J J Mock, D R Smith and W J Padilla, Phys. Rev. Lett. 100, 207402 (2008)

  19. A Chen and Z Song, IEEE Trans. Nanotechnol. 19, 197 (2020)

    Article  ADS  Google Scholar 

  20. W Xin, Z Binzhen, W Wanjun, W Junlin and D Junping, IEEE Photon. J. 9, 112 (2017)

    Google Scholar 

  21. Z Vafapour, IEEE Trans. Nanobiosci. 18, 622 (2019)

  22. F Ahmed, T Hassan and N Shoaib, IEEE Antennas Wirel. Propag. Lett. 19, 512 (2020)

    Article  ADS  Google Scholar 

  23. B-X Wang, SN Appl. Sci. 2 (2020)

  24. S Yuan, R Yang, J Xu, J Wang and J Tian, Mater. Res. Express 6, 075807 (2019)

    Article  ADS  Google Scholar 

  25. B X Wang, C Tang, Q Niu, Y He and T Chen, Nanoscale Res. Lett. 14, 64 (2019)

    Article  ADS  Google Scholar 

  26. B X Khuyen, B S Tung, Y J Kim, J S Hwang, K W Kim, J Y Rhee, V D Lam, Y H Kim and Y P Lee, Sci. Rep. 8, 11632 (2018)

    Article  ADS  Google Scholar 

  27. K R Bhati, V Hiremath and Dixit, International Conference on Microwave and Photonics (ICMAP) (Dhanbad, 2015)

  28. Sharma, R Panwar and R Khanna, IEEE Magn. Lett. 10, 1 (2019)

  29. G Duan, J Schalch, X Zhao, J Zhang, R D Averitt and X Zhang, Opt. Express 26, 2242 (2018)

    Article  ADS  Google Scholar 

  30. S Chejarla, S R Thummaluru and R K Chaudhary, Elect. Lett. 55, 133 (2019)

    Article  ADS  Google Scholar 

  31. Z Yu, S Liu, C Fang, X Huang and Y Helin, Phys. Scr. 90, 065501 (2015)

  32. P Jain, A K Singh, J K Pandey, S Garg, S M Bansal, M Agarwal, S Kumar, N Sardana, N Gupta and A K Singh, IET Microw. Antenna Propag. 14, 390 (2020)

  33. B X Wang, IEEE J. Sel. Top. Quantum Electron. 23(4), 1 (2016)

    Article  Google Scholar 

  34. G Duan, J Schalch, X Zhao, J Zhang, R Averitt and X Zhang, Opt. Express 26, 2242 (2018)

  35. G-D Wang, J-F Chen, X Hu, Z-Q Chen and M Liu, Prog. Electromag. Res. 145, 175 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Elakkiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elakkiya, A., Radha, S., Sreeja, B.S. et al. Terahertz single dual multi-band metamaterial absorber. Pramana - J Phys 95, 163 (2021). https://doi.org/10.1007/s12043-021-02201-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02201-1

Keywords

PACS

Navigation