Skip to main content
Log in

Generalised exponential rational function method for obtaining numerous exact soliton solutions to a (\(3+1\))-dimensional Jimbo–Miwa equation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this work, we apply the generalised exponential rational function (GERF) method on an extended (\(3+1\))-dimensional Jimbo–Miwa (JM) equation which describes the modelling of water waves of long wavelength with weakly nonlinear restoring forces and frequency dispersion. This JM equation is also used to construct modelling waves in ferromagnetic media and two-dimensional matter-wave pulses in Bose–Einstein condensates. The main purpose is to construct analytical wave solutions for the (\(3+1\))-dimensional JM equation by utilising the GERF method with the help of symbolic computations. We have also presented three-dimensional plots to observe the dynamics of obtained results. To understand physical phenomenon through different shapes of solitary waves, we discussed solitons, the interaction of multiwave solitons, lump-type solitons and kink-type solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M M Hassan, M A Abdel-Razek and A A H Shoreh, Rep. Math. Phys. 74, 347 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. A R Seadawy, M Arshad and D Lu, Eur. Phys. J. Plus 132, 162 (2017)

    Article  Google Scholar 

  3. G Ebadi, N Y Fard, A H Bhrawy, S Kumar, H Tirki and A Yildirim, Rom. Rep. Phys. 65, 27 (2013)

    Google Scholar 

  4. A Ali, A S Seadawy and D Lu, Optik 145, 79 (2017)

    Article  ADS  Google Scholar 

  5. L T K Nguyen, Chaos Solitons Fractals 73, 148 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. T T Jia, Y Z Chai and H Q Hao, Superlatt. Microstruct. 105, 172 (2017)

    Article  ADS  Google Scholar 

  7. I Aslan, Appl. Math. Comput. 218, 9594 (2012)

    MathSciNet  Google Scholar 

  8. A R Seadawy, Appl. Math. Lett. 25, 687 (2012)

    Article  MathSciNet  Google Scholar 

  9. E H M Zahran and M M A Khater, Appl. Math. Model. 40, 1769 (2016)

    Article  MathSciNet  Google Scholar 

  10. S Kumar and D Kumar, Comput. Math. Appl. 77, 2096 (2019)

    Article  MathSciNet  Google Scholar 

  11. D Kumar and S Kumar, Comput. Math. Appl. 78, 857 (2019)

    Article  MathSciNet  Google Scholar 

  12. S Kumar and A Kumar, Nonlinear Dyn. 98, 1891 (2019)

    Article  Google Scholar 

  13. S Kumar, M Kumar and D Kumar, Pramana – J. Phys. 94: 28 (2020)

    Article  ADS  Google Scholar 

  14. D Kumar and S Kumar, Eur. Phys. J. Plus 135, 162 (2020)

    Article  Google Scholar 

  15. M Kumar and K Manju, Int. J. Geom. Meth. Mod. Phys. 18(2), 2150028 (2021)

    Article  Google Scholar 

  16. M Kumar and K Manju, Eur. Phys. J. Plus 135(10), 803 (2020)

    Article  Google Scholar 

  17. S Kumar and S Rani, Pramana – J. Phys. 95: 51 (2021)

    Article  ADS  Google Scholar 

  18. S Kumar, D Kumar and H Kharbanda, Pramana – J. Phys. 95: 33 (2021)

    Article  ADS  Google Scholar 

  19. M Jimbo and T Miwa, Publ. Res. Inst. Math. Sci. 19, 943 (1983)

    Article  MathSciNet  Google Scholar 

  20. X Luo, Eur. Phys. J. Plus 135, 36 (2020)

    Article  ADS  Google Scholar 

  21. Z Lü, J Su and F Xie, Comput. Math. Appl. 65, 648 (2013)

    Article  MathSciNet  Google Scholar 

  22. M A H Cai, Chin. Phys. Lett. 22(3), 554 (2005)

    Article  ADS  Google Scholar 

  23. T Su and H Dai, Math. Probl. Eng. 2017, 2924947 (2017)

    Google Scholar 

  24. M Singh, Nonlinear Dyn. 84, 875 (2016)

    Article  Google Scholar 

  25. F H Qi, Y H Huang and P Wang, Appl. Math. Lett. 100, 106004 (2020)

    Article  MathSciNet  Google Scholar 

  26. Y L Sun, W X Ma, J P Yu, B Ren and C M Khalique, Mod. Phys. Lett. B 33, 1950133 (2019)

    Article  ADS  Google Scholar 

  27. J Liu, X Yang, M Cheng, Y Feng and Y Wang, Comput. Math. Appl. 78, 1947 (2019)

    Article  MathSciNet  Google Scholar 

  28. Y H Wang, H Wang, H H Dong, H S Zhang and C Temuer, Nonlinear Dyn. 92, 487 (2018)

    Article  Google Scholar 

  29. H N Xu, W Y Ruan, Y Zhang and X Lü, Appl. Math. Lett. 99, 105976 (2020)

    Article  MathSciNet  Google Scholar 

  30. J Liu, X Yang and Y Feng, Math. Meth. Appl. Sci. 43(4), 1646 (2020)

    Article  Google Scholar 

  31. J Liu, Y Zhang and Y Wang, Waves Random Complex 28(3), 508 (2020)

    Article  ADS  Google Scholar 

  32. J Liu, X Yang and Y Feng, Mod. Phys. Lett. A 35(7), 2050028 (2020)

    Article  ADS  Google Scholar 

  33. J Liu, Y Zhang and Y Wang, Z. Naturforschung A 73(2), 143 (2018)

    Article  ADS  Google Scholar 

  34. X Yang and J A T Machado, Math. Meth. Appl. Sci. 42(18), 7539 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. J Liu, X Yang, Y Feng and P Cui, Math. Comput. Simul. 178, 407 (2020)

    Article  Google Scholar 

  36. J Liu, X Yang, Y Feng, P Cui and L Geng, J. Geom. Phys. 160, 104000 (2021)

    Article  Google Scholar 

  37. C M Khalique and L D Moleleki, Disc. Cont. Dyn. Syst. S 13(10), 2789 (2020)

    Google Scholar 

  38. B Ghanbari, A Yusuf, M Inc and D Baleanu, Adv. Differ. Equ. 2019, 49 (2019)

    Article  Google Scholar 

  39. B Ghanbari and M Inc, Eur. Phys. J. Plus 133, 1 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by Science and Engineering Research Board (SERB), DST, India, under project scheme MATRICS via grant No. MTR/2020/000531. The author, Sachin Kumar, has received this research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kumar, D. Generalised exponential rational function method for obtaining numerous exact soliton solutions to a (\(3+1\))-dimensional Jimbo–Miwa equation. Pramana - J Phys 95, 152 (2021). https://doi.org/10.1007/s12043-021-02174-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02174-1

Keywords

PACS Nos

Navigation