Skip to main content

Advertisement

Log in

Effect of Li doping on passivation of trap states and improvement in charge transport in \(\hbox {TiO}_{2}\) thin films

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the framework of this study, pure and Li-doped \(\hbox {TiO}_{2}\) (0.5, 1.5, 2.5 at.%) thin film samples were synthesised via sol–gel spin coating method. The structural, morphological and optical properties were examined by using X-ray diffraction, scanning electron microscopy (SEM) and UV–Vis spectroscopy respectively. XRD pattern reveals the polycrystalline nature of Li-doped \(\hbox {TiO}_{2}\) thin films with anatase crystal phase. The average crystallite sizes were found to be in the range of 19–23 nm. The energy-dispersive X-ray spectroscopy (EDS) demonstrates the oxidation states of Ti, O and Li in the deposited thin films. The optical band gap of \(\hbox {TiO}_{2}\) thin films was varied from 3.15 to 3.26 eV on increasing Li doping. For the study of light emission properties of Li-doped \(\hbox {TiO}_{2}\) thin films, the PL spectra were recorded in the wavelength range of 350–700 nm. The doping of Li on \(\hbox {TiO}_{2}\) films show improved charge transport properties which can be used in optoelectronics and energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P Zhang, C Shao, X Li, M Zhang, X Zhang, Y Sun and Y Liu, J. Hazardous Mater. 237,  331 (2012)

    Article  Google Scholar 

  2. Z Kaishun, D Guangzong, L Juncheng, X Boxu and W Danping, J. Mater. Sci. Amp. Technol. 35, 483 (2019)

    Article  Google Scholar 

  3. V Sammelselg, A Rosental, A Tarre, L Niinisto, K Heiskanen, K Ilmonen, L S Johansson and T Uustare, Appl. Surf. Sci. 134, 78 (1998)

    Article  ADS  Google Scholar 

  4. A E Jimenez, Gonzalez and S G Santiago, Semiconduct. Sci. Technol. 22, 709 (2007)

    Article  ADS  Google Scholar 

  5. M M Yildizhan, S Sturm and A M Gulgun, J. Mater. Sci. 51, 5912 (2016)

    Article  ADS  Google Scholar 

  6. Ulrike Diebold, Surf. Sci. Rep. 48, 53 (2003)

    Article  ADS  Google Scholar 

  7. S Vedavarshni, T Raguram and K S Rajni, Pramana – J. Phys. 94: 1 (2020)

    Article  Google Scholar 

  8. T S Senthil, N Muthukumarasamy, S Agilan, M Thambidurai and R Balasundaraprabhu, Mater. Sci. Eng. B 174, 102 (2010)

    Article  Google Scholar 

  9. A M Gaur, R Joshi and M Kumar, WCE 2 6 (2011)

    Google Scholar 

  10. T Ranganayaki, M Venkatachalam, T Vasuki and S Shankar, IJIRSET 3, 10 (2014)

    Google Scholar 

  11. M Anpo, Pure Appl. Chem. 72, 1265 (2000)

    Article  Google Scholar 

  12. X Chen and S S Mao, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  13. Y Bessekhouad, D Robert, J V Weber and N Chaoui, J. Photochem. Photobiol. A 167,57 (2004)

    Article  Google Scholar 

  14. Z Li, H Zhang, W Zheng, W Wang, H Huang, C Wang, A G Macdiarmid and Y Wei, J. Am. Chem. Sci. 130, 5036 (2008)

    Article  Google Scholar 

  15. Y Q Wang, L Gu, Y G Guo, H Li, He XQ, S Tsukimoto, Y Ikuhara and L J Wan, J. Am. Chem. Soc. 134, 7874 (2012)

    Article  Google Scholar 

  16. F Giordano, A Abate, J P C Baena, M Saliba, T Matsui, H I Sang, S M Zakeeruddin, M K Nazeeruddin, A Hagfeldt and M Graetzel, Nature Commun. 7, 10379 (2016)

    Article  ADS  Google Scholar 

  17. Y Liang, K Su, L Cao and Z Li, Mol. Cat. 465, 16 (2019)

    Article  Google Scholar 

  18. B Roose, S Pathak and U Steiner, Chem. Soc. Rev. 44, 8326 (2015)

    Article  Google Scholar 

  19. D Koch and S Manzhos, J. Phys. Chem. Lett. 8, 1593 (2017)

    Article  Google Scholar 

  20. L X Chen, T Rajh, Z Wang and M C Thurnauer, J. Phys. Chem. B 101,10688 (1997)

    Article  Google Scholar 

  21. R D Shannon, Acta Crystallogr.\(A\)32, 751 (1976)

  22. G K Boschloo, A Goossens and J Schoonman, J. Electrochem. Soc. 144, 1311 (1997)

    Article  ADS  Google Scholar 

  23. Y Lei, L D Zhang and J C Fan, Chem. Phys. Lett. 338, 231 (2001)

    Article  ADS  Google Scholar 

  24. N Inoue, H Yuasa and M Okoshi, Am. Chem. Soc. 30, 393 (2002)

    Google Scholar 

  25. T Lopez, J H Ventura, R Gomez, F Tzompantzi, E Sanchez, X Bokhimi and A Garcia, J. Mol. Cat. A 167, 101 (2001)

    Article  Google Scholar 

  26. G K Upadhyay, J K Rajput, T K Pathak, P K Pal and L P Purohit, Appl. Surf. Sci. 509, 145326 (2020)

  27. G K Upadhyay, V Kumar and L P Purohit, J. Alloys Compds 856, 157453 (2021)

  28. G K Upadhyay, T K Pathak and L P Purohit, Crys. Res. Technol. 55, 2000099 (2020)

    Article  Google Scholar 

  29. T K Pathak, J K Rajput, V Kumar, L P Purohit, H C Swart and R E Kroon, J. Colloid Interf. Sci. 487, 378 (2017)

    Article  ADS  Google Scholar 

  30. R Alvarez, F Guerrero, J A Eiras and J D S Guerra, Ceram. Int. 41, 6281 (2015)

    Article  Google Scholar 

  31. T N Ravishankar, G Nagaraju and J Dupont, Mater. Res. Bull. 78, 103 (2016)

    Article  Google Scholar 

  32. V S Rana, J K Rajput, T K Pathak and L P Purohit, J. Alloys Compds 764, 724 (2018)

    Article  Google Scholar 

  33. A L Patterson, Phys. Rev. 56, 978 (1939)

    Article  ADS  Google Scholar 

  34. G K Upadhyay, J K Rajput, T K Pathak, V Kumar and L P Purohit, Vacuum 160, 154 (2019)

    Article  ADS  Google Scholar 

  35. L Chunfeng, L Jingting, L Huabin, F Bo, P Huanxin, Z Jun, S Huibin, Z Zhuanghao, L Guangxing and F Ping,Materials 11, 355 (2018)

    Article  Google Scholar 

  36. F Zhou, K Liang, H Shao and A Hu, Key Eng. Mater. 280, 805 (2005)

    Google Scholar 

  37. S Sankar and K G Gopchandran, Cryst. Res. Technol. 44, 989 (2009)

    Article  Google Scholar 

  38. V S Rana, J K Rajput, T K Pathak and L P Purohit, Colloid Surf. A 586, 124103 (2020)

  39. R K Gupta, F Yakuphanoglu and F M Amanullah, Physica E 43,1666 (2011)

    Article  ADS  Google Scholar 

  40. J M Wu and W T Wu, Nanotechnology 17, 105 (2005)

    Article  ADS  Google Scholar 

  41. D Nadica, J. Phys. Chem. B 110, 25366 (2006)

    Article  Google Scholar 

  42. P B Nair, V B Justinvictor, G P Daniel, K Joy and V Ramakrishnan, Thin Solid Films 550, 1221 (2014)

    Article  Google Scholar 

  43. W Damian, K Danuta, D Jaroslawand and M Michal, Int. J. Photoenergy (2013)

  44. T Marimuthu, N Anandhan, S Rajendran, M Mummoorthy and M Vidhya, Int. J. Chemtech. Res. 6, 5309 (2014)

    Google Scholar 

  45. J Liqiang, Q Yichun and W Baiqi, Solar Energy Mater. Solar Cells 90, 1773 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L P Purohit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panday, M., Upadhyay, G.K. & Purohit, L.P. Effect of Li doping on passivation of trap states and improvement in charge transport in \(\hbox {TiO}_{2}\) thin films. Pramana - J Phys 95, 132 (2021). https://doi.org/10.1007/s12043-021-02167-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02167-0

Keywords

PACS

Navigation