Skip to main content
Log in

On new symmetries and exact solutions of Einstein’s field equation for perfect fluid distribution

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Some new infinite-dimensional generalised Lie symmetries of Einstein’s field equations for perfect fluid distribution are found by using the Lie symmetry analysis. The reduced ordinary differential equations are solved to obtain new non-trivial exact solutions. The software MAPLE is used for computation and MAPLE code is given to facilitate the research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. M Oltean and C F Sopuerta, J. Sci. Comput. 1 (2018)

  2. W Liu et al, Photon. Res. 6(3), 220 (2018)

    Article  Google Scholar 

  3. W Liu et al, Photon. Res. 4(3), 111 (2016)

    Article  Google Scholar 

  4. W Liu et al, Opt. Express 25(3), 2950 (2017)

    Article  ADS  Google Scholar 

  5. W Liu et al, Nanoscale 9(18), 5806 (2017)

    Article  Google Scholar 

  6. Y Yan, W Liu, Q Zhou and A Biswas, Nonlinear Dynam. 99(2), 1313 (2020)

    Article  Google Scholar 

  7. W Liu et al, Nonlinear Dynam. 89(4), 2933 (2017)

    Article  MathSciNet  Google Scholar 

  8. C Wang et al, Optik 184, 370 (2019)

    Article  ADS  Google Scholar 

  9. X Fan et al, Optik 186, 326 (2019)

    Article  ADS  Google Scholar 

  10. G W Bluman and S C Anco, Symmetry and integration methods for differential equations (Springer Verlag, New York, 2002)

    MATH  Google Scholar 

  11. P J Olver, Applications of Lie groups to differential equations (Springer Verlag, New York, 1993)

    Book  Google Scholar 

  12. S Kumar, K Singh and R K Gupta, Pramana – J. Phys. 79(1), 41 (2012)

    Google Scholar 

  13. M Singh and R K Gupta, Int. J. Appl. Comput. Math. 4(3), 1 (2018)

    Article  Google Scholar 

  14. L Kaur and R K Gupta, Maejo Int. J. Sci. Technol. 7(1), 133 (2013)

    Google Scholar 

  15. L Kaur and R K Gupta, Phys. Scr. 87(3), 035003 (2013)

    Article  ADS  Google Scholar 

  16. H Stephani, D Kramer, M MacCallum, C Hoenselaers and E Herlt, Exact solutions of Einstein’s field equations (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  17. W Hereman, M Colagrosso, R Sayers, A Ringler, B Deconinck, M Nivala and M Hickman, Differential equations with symbolic computation edited by D Wang and Z Zheng (Birkhäuser, Basel, 2005) Chapter 15, pp. 249–285

  18. W Hereman, P J Adams, H L Eklund, M S Hickman and B M Herbst, Advances in nonlinear waves and symbolic computation edited by Z Yan (Nova Science, New York, 2009) Chapter 2, pp. 19–79

Download references

Acknowledgements

Rajesh Kumar Gupta and Radhika thank the National Board of Higher Mathematics for financial support provided through Ref. No. 2/48(16)/2016/NBHM(R.P.)\(/\)R&D II/14982.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Appendix A

Appendix A

MAPLE code [17, 18] for Lie symmetries:

$$\begin{aligned}&with(PDEtools){:}\\&depvar := u(x, t){:}\\&declare(u(x, t)){:}\\&alias(u = u(x, t)){:}\\&pde1 := (-2*u^{2}+1)*(diff(u, t, t)\\&\quad -(diff(u, x, x)))\\&\quad +2*u*((diff(u, t))^{2}-(diff(u, x))^{2}) = 0{:}\\&detsys:= DeterminingPDE(pde1){:}\\&pdsolve(detsys): \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R.K., Jain, R., Kumar, S. et al. On new symmetries and exact solutions of Einstein’s field equation for perfect fluid distribution. Pramana - J Phys 95, 123 (2021). https://doi.org/10.1007/s12043-021-02162-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02162-5

Keywords

PACS Nos

Navigation