Skip to main content
Log in

Theoretical investigation of magnetic parameters @ \({\text {Mn}}^{2+}\) @ \({\text {Co}}^{2+}\) in distorted octahedron

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The quantum chemical calculations of the magnetic parameters for the dopants manganese [Mn(II)] and cobalt [Co(II)] ion in the perovskite host \({\text {ZnTiO}}_{3}\) by computational program package of ORCA has been reported. All calculations are made in the distorted octahedron environment of the central metal ion Mn(II) and Co(II) about the oxygen anions. An attempt has been made to discuss the formation of orbitals in the interaction space by the power series method. The Hessian matrix as a function of electronic density distribution in active space has been constructed. The zero-field splitting (ZFS) parameters, g-tensors and absorption spectrum with the transition states are computed by quantum computational method. A comparative study of the density of states (DOS) for Mn(II) and Co(II) in the host is investigated in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J F Scott, Ferroelectric memories (Springer, Berlin, 2000)

    Book  Google Scholar 

  2. M Dawber, K M Rabe and J F Scott, Rev. Mod. Phys. 77, 1083 (2005)

    Article  ADS  Google Scholar 

  3. A M Kolpak, D Li, R Shao, A M Rappe and D A Bonnell, Phys. Rev. Lett. 101, 1 (2008)

    Article  Google Scholar 

  4. A Kojima, K Teshima, Y Shirai and T Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  Google Scholar 

  5. M M Lee, J Teuscher, T Miyasaka, T N Murakami and H Snaith, Science 338, 643 (2012)

    Article  ADS  Google Scholar 

  6. H S Kim, C R Lee, J H Im, K B Lee, T Moechl, A Marchioro, S J Moon, R H Baker, J H Yum, J E Moser, M Gratzel and N G Park, Sci. Rep. 2, 591 (2012)

    Article  Google Scholar 

  7. M Pineda, J L G Fierro, J M Palacios, C Cilleruelo, E Garcia and J V Ibarra, Appl. Surf. Sci. 119, 1 (1997)

    Article  ADS  Google Scholar 

  8. N Pal, M Paul and A Bhaumik, Appl. Catal. A 393, 153 (2011)

    Article  Google Scholar 

  9. S P Wu, J H Luo and S X Cao, J. Alloys Compd. 502, 147 (2010)

    Article  Google Scholar 

  10. B C Yadav, A Yadav, S Singh and K Singh, Sens. Actuators B 177, 605 (2013)

    Article  Google Scholar 

  11. S J Darzi and A R Mahjoub, J. Alloys Compd. 486, 805 (2009)

    Article  Google Scholar 

  12. W E Pickett, Rev. Mod. Phys. 61, 433 (1989)

    Article  ADS  Google Scholar 

  13. R I Eglitis and D Vanderbilt, Phys. Rev. B 76, 155439 (2007)

    Article  ADS  Google Scholar 

  14. R I Eglitis and M Rohlfing, J. Phys.: Condens. Matter 22, 415901 (2010)

    Google Scholar 

  15. X Wang, S Tomoda, T Shimada and T Kitamura, J. Phys.: Condens. Matter 24, 045903 (2012)

    ADS  Google Scholar 

  16. T Shimada, S Tomoda and T Kitamura, J. Phys.: Condens. Matter 22, 355901 (2010)

    ADS  Google Scholar 

  17. N Iles, F Finocchi and F K D Khodja, J. Phys.: Condens. Matter 22, 305001 (2010)

    Google Scholar 

  18. B Meyer and D Vanderbilt, Phys. Rev. B 63, 205426 (2001)

    Article  ADS  Google Scholar 

  19. F A Cotton and X Feng, J. Am. Chem. Soc. 120, 3387 (1998)

    Article  Google Scholar 

  20. F A Cotton and X Feng, J. Am. Chem. Soc. 119, 7514 (1997)

    Article  Google Scholar 

  21. E C Paris, M F C Gurgel, T M Boschi, M R Joya, P S Pizani, A G Souza, E R Leite, J A Varela and E Longo, J. Alloys Compds 462, 157 (2008)

    Article  Google Scholar 

  22. M Chakraborty, V K Rai and V Mishra, Optik 127, 4333 (2016)

    Article  ADS  Google Scholar 

  23. R Maurice, R Bastardis, C de Graaf, N Suaund, T Mallah and N Guihery, J. Chem. Theor. Comput. 5, 2977 (2009)

    Article  Google Scholar 

  24. M Chakraborty, V K Rai and K Mitra, Pramana – J. Phys. 92: 46 (2019)

    Article  ADS  Google Scholar 

  25. M Kaupp, M Buhl and V G Malkin, Calculation of NMR and EPR parameters (Wiley-VCH Verlag GmbH & Co, Weinheim, Germany, 2004)

  26. F Neese, Coord. Chem. Rev. 253, 526 (2009)

    Article  Google Scholar 

  27. P G Fernandez, J A Aramburu, M T Barriuso and M Moreno, J. Phys.: Conf. Ser. 249, 012033 (2010)

    Google Scholar 

  28. E Y Mischko, D V Korchagin, K V Bozhenko, S V Chapyshev and S M Aldoshin, J. Chem. Phys. 133, 064101 (2010)

    Article  ADS  Google Scholar 

  29. M Chakraborty and V K Rai, Pramana – J. Phys. 89: 88 (2017)

    Article  ADS  Google Scholar 

  30. O Vahtras, O Loboda, B Minaev, H Agren and K Ruud, Chem. Phys. 279, 133 (2002)

    Article  Google Scholar 

  31. R Sessoli, D Gatteschi, A Caneschi and M A Novak, Nature 365, 141 (1993)

    Article  ADS  Google Scholar 

  32. A Rajca, Chem. Rev. 94, 871 (1994)

    Article  Google Scholar 

  33. D Gatteschi and L Sorace, J. Solid State Chem. 159, 253 (2001)

    Article  ADS  Google Scholar 

  34. R Koch, O Waldmann, P Muller, U Reimann and R W Saalfrank, Phys. Rev. B 67, 094407 (2003)

    Article  ADS  Google Scholar 

  35. L Bogani and W Wernsdorfer, Nature Mater. 7, 179 (2008)

    Article  ADS  Google Scholar 

  36. W Wernsdorfer, Nature Nanotechnol. 4, 145 (2009)

    Article  ADS  Google Scholar 

  37. J N Rebilly, G Charron, E Riviere, R Guillot, A L Barra, M D Serrano, J Van Slageren and T Mallah, Chem.-Eur. J. 14, 1169 (2008)

    Article  Google Scholar 

  38. M Benmelouka, J Van Tol, A Borel, M Port, L Helm, L C Brunel and A E Merbach, J. Am. Chem. Soc. 128, 7807 (2006)

    Article  Google Scholar 

  39. R R Sharma, T P Das and R Orbach, Phys. Rev. 171, 378 (1968)

    Article  ADS  Google Scholar 

  40. W J Nicholson and G Burns, Phys. Rev. 129, 2490 (1963)

    Article  ADS  Google Scholar 

  41. R A Serway, W Berlinger, K A Mullker and R W Collins, Phys. Rev. B 16, 4761 (1977)

    Article  ADS  Google Scholar 

  42. J S Griffith, The theory of transition-metal ions (Cambridge University Press, Cambridge, 1961)

    MATH  Google Scholar 

  43. G Das and A C Wahl, J. Chem. Phys. 56, 1769 (1972)

    Article  ADS  Google Scholar 

  44. H J Werner and W J Meyer, Chem. Phys. 73, 2342 (1980)

    ADS  MathSciNet  Google Scholar 

  45. H J Werner and P J Knowles, J. Chem. Phys. 82, 5053 (1985)

    Article  ADS  Google Scholar 

  46. F Neese and E I Solomon, Inorg. Chem. 37, 6568 (1998)

    Article  Google Scholar 

  47. M Magdalena Szostak, Henryk Chojnacki, Katarzyna Piela, Ewa Bidzińska and Krystyna Dyrek, Opt. Mater. 35, 1004 (2013)

    Article  ADS  Google Scholar 

  48. M K Morigaki, E M da Silva, C V P de Melo, J R Pavan and Renzo C Silva, Quim. Nova 32, 1812 (2009)

    Article  Google Scholar 

  49. J N Byrd, V F Lotrich and R J Bartlett, physics.chem-ph 1404, 5966v1 (2014)

    Google Scholar 

  50. M Springborg, Methods of electronic-structure calculations (John Wiley and Sons Limited, 2000)

    Google Scholar 

  51. P W Atkins, Molecular quantum mechanics, Parts I and II (University Press, Oxford, 1977)

    Google Scholar 

  52. M Bondt and A Essen, J. Algebra 282, 195 (2004)

    Article  MathSciNet  Google Scholar 

  53. F Neese, ORCA – An Ab Initio, Density Functional and Semiempirical Program Package, version 3.0.3, Max-Planck-Institute for Chemische Energiekonversion, Germany

  54. F Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73 (2012)

    Google Scholar 

  55. E F Pettersen, T D Goddard, C C Huang, G S Couch, D M Greenblatt, E C Meng and T E Ferrin, J. Comput. Chem. 25, 1605 (2004)

    Article  Google Scholar 

  56. N M O’Boyle, A L Tenderholt and K M Langner, J. Comput. Chem. 29, 839 (2008)

    Article  Google Scholar 

  57. A D Becke, Phys. Rev. A 38, 3098.F (1988)

    Article  ADS  Google Scholar 

  58. S Zein, C Duboc, W Lubitz and F Neese, Inorg. Chem. 47, 134 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Science and Engineering Research Board (SERB), DST, New Delhi, India for providing financial assistance in the form of a project (EMR/2014/001273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitesh Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, M., Rai, V.K. Theoretical investigation of magnetic parameters @ \({\text {Mn}}^{2+}\) @ \({\text {Co}}^{2+}\) in distorted octahedron. Pramana - J Phys 95, 130 (2021). https://doi.org/10.1007/s12043-021-02158-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02158-1

Keywords

PACS No

Navigation