Skip to main content
Log in

Investigation on the electrical and optical properties of some zinc titanate ceramics

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The ceramics of spinel zinc orthotitanate (SZT) and perovskite zinc metatitanate (PZT) sintered at \(800^{\circ }\hbox {C}\) have been prepared using the high-energy ball milling technique. The structural and optical characterisation of the prepared samples has been performed using X-ray diffraction and Fourier transformation of infrared (FT-IR) spectroscopy analysis. The measurements of frequency-dependent dielectric constant of the PZT and SZT ceramics sintered at \(800^{\circ }\hbox {C}\) have been performed in the \((50{-}600)^{\circ }\hbox {C}\) temperature range. Impedance spectroscopy studies have been reported for the prepared nanocrystalline ceramics. The empirical vibrational frequencies observed from the FT-IR spectra have been compared using the computational method of ORCA program package. Constraints for symmetry, bonds, angles or dihedral angles have not been applied in the geometry optimisation calculations. Hybrid three-parameter exchange-correlation functional of Becke, Lee, Yang, Parr with 20% amount of exact exchange and Ahlrichs triple-zeta valence (def2-TZVP) basis set with polarisation function have been investigated for all atoms without considering the relativistic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G Prieto, A Martinez, R Murciano and A M Arribas, Appl. Catal. A Gen. 367, 146 (2009)

    Google Scholar 

  2. S Kiatphuengporn, M Chareonpanich and J Limtrakul, Chem. Eng. J. 240, 527 (2014)

    Google Scholar 

  3. R G Gordani, A Ghasemi and A Saidi, Ceram. Intern. 40, 4945 (2014)

    Google Scholar 

  4. S A Maybodi, V Rezaei and Rastegarzadeh, Spectrochim. Acta 136, 832 (2015)

    Google Scholar 

  5. C Tanggarnjanavalukul, W Donphai, T Witoon, M Chareonpanich and J Limtrakul, Chem. Eng. J. 262, 364 (2015)

    Google Scholar 

  6. S Y Chang, H Y Chang, G I Chen, J G Chen, L Y Chai, S Wu and H T Fang, J. Alloys Compd. 354, 303 (2003)

    Google Scholar 

  7. K S Manik, P Bose and K S Pradhan, Mater. Chem. Phys. 82, 837 (2003)

    Google Scholar 

  8. G Akgul, J. Molec. Struct. 1037, 35 (2013)

    ADS  Google Scholar 

  9. M L Levy, Compt. Rend. 105, 378 (1887)

    Google Scholar 

  10. M L Levy, Compt. Rend. 107, 421 (1888)

    Google Scholar 

  11. F H Dulin and D E Rase, J. Am. Ceram. Soc. 43, 125 (1960)

    Google Scholar 

  12. S F Bartram and R A Slepetys, J. Am. Ceram. Soc. 44, 493 (1961)

    Google Scholar 

  13. A Golovchanski, H T Kim and Y H Kim, J. Korean Phys. Soc. 32, 1167 (1998)

    Google Scholar 

  14. H T Kim, S H Kim and S Nahm, J. Am. Ceram. Soc. 82, 3043 (1999)

    Google Scholar 

  15. H T Kim, S Nahm and J D Byun, J. Am. Ceram. Soc. 82, 3476 (1999)

    Google Scholar 

  16. W Mojtahedi and J Abbasian, Energy Fuel 9, 429 (1995)

    Google Scholar 

  17. H T Kim, J D Byun and Y Kim, Mater. Res. Bull. 33, 963 (1998)

    Google Scholar 

  18. M Pineda, J L G Fierro, J M Palacios, C Cilleruelo, E Garcia and J V M Ibarra, Appl. Surf. Sci. 119, 1 (1997)

    ADS  Google Scholar 

  19. L Alonso, J M Palacios and R Moliner, Energy Fuel 15, 1396 (2001)

    Google Scholar 

  20. K Jothimurugesan and S K Gangwal, Ind. Eng. Res. 37, 1929 (1998)

    Google Scholar 

  21. R B Slimane and J Abbasian, Adv. Environ. Res. 4, 147 (2000)

    Google Scholar 

  22. R B Rankin, A Campos, H Tian, R Siriwardane, A Roy, J James, J Spivey, D S Sholl and J K Johnson, J. Am. Ceram. Soc. 91, 584 (2008)

    Google Scholar 

  23. Z Ali, S Ali, I Ahmad, I Khan and H A R Aliabad, Physica B 420, 54 (2013)

    ADS  Google Scholar 

  24. J S Jang, P H Borse, J S Lee, K T Lim, O S Jung, E D Jeoung, J S Bae, M S Won and H G Kim, Bull Korean Chem. Soc. 30, 3021 (2009)

    Google Scholar 

  25. K H Yoon, J Cho and D H Kang, Mater. Res. Bull. 34, 1451 (1999)

    Google Scholar 

  26. K Sarkar, E V Braden, T Froschl, N Husing and P M Buschbaum, J. Mater. Chem. A 2, 15008 (2014)

    Google Scholar 

  27. S Ayyed, H Abdelkefi, H Khamakhem and A Matoussi, J. Alloys Compd. 677, 185 (2016)

    Google Scholar 

  28. K Wakino, T Nischicawa, Y Ishikawa and H Tamura, Br. Ceram. Trans. J. 89, 39 (1990)

    Google Scholar 

  29. H Sreemoolanadhan, M T Sebastian and P Mohanan, Mater. Res. Bull. 30, 653 (1995)

    Google Scholar 

  30. H T Kim, J D Byun and Y Kim, Mater. Res. Bull. 33, 975 (1998)

    Google Scholar 

  31. A Chaouchi, S d’Astorg, S Marinel and M Aliouat, Mater. Chem. Phys. 103, 106 (2007)

    Google Scholar 

  32. M R Vaezi, A Kandjani, L Nikzad, N A Arefian, S Alibeigi, M Tabriz, S H Ghassem and J Samei, Mater. Sci. Pol. 25, 110 (2007)

    Google Scholar 

  33. L Hou, Y Hou, M K Zhu, J Tang, J Liu, H Wang and H Yan, Mater. Lett. 59, 197 (2005)

    Google Scholar 

  34. P Vlazan, D H Ursu, C Irina-Moisescu, I Miron, P Sfirloaga and E Rusu, Mater. Charact. 101, 153 (2015)

    Google Scholar 

  35. O Yamaguchi, M Morimi, H Kawabata and K Shimizu, J. Am. Ceram. Soc. 70, c97 (1987)

    Google Scholar 

  36. A Stoyanova, H Hitkova, A Bachvarova-Nedelcheva, R Iordanova, N Ivanova and M Sredkova, J. Chem. Technol. Metall. 48, 154 (2013)

    Google Scholar 

  37. B C Yadava, A Yadav, S Singh and K Singh, Sens. Actuat. B 177, 605 (2013)

    Google Scholar 

  38. A Shalaby, A Bachvarova-Nedelcheva, R Iordanova, Y Dimitriev, A Stoyanova, H Hitkova, N Ivanova and M Sredkova, J. Optoelectron. Adv. Mater. 17, 248 (2015)

    Google Scholar 

  39. C Li, M Bando, M Nakamura, N Kimizuka and H Kito, Mater. Res. Bull. 35, 351 (2000)

  40. S Sedpho, D Wongratanaphisan, P Mangkorntong, N Mangkorntong and S Choopun, J. Nat. Sci. 7, 99 (2008)

    Google Scholar 

  41. K Jothimurugesan and S K Gangwal, Ind. Eng. Chem. Res. 37, 1929 (1998)

    Google Scholar 

  42. S K S Parasar, R N P Choudhary and B S Murthy,J. Appl. Phys. 94, 6091 (2003)

    ADS  Google Scholar 

  43. L B Kong, J M Zhu and W T Ok, J. Alloys. Compd. 236, 242 (2002)

    Google Scholar 

  44. M Chakraborty, S Chaudhuri, V K Rai and V Mishra,J. Mater. Sci.: Mater. Electron. 27, 7478 (2016)

    Google Scholar 

  45. F Neese, Coord. Chem. Rev. 253, 526 (2009)

    Google Scholar 

  46. F Neese and E I Solomon, Inorg. Chem. 37, 6568 (1998)

    Google Scholar 

  47. M Chakraborty, V K Rai and V Mishra, Optik 127, 4333 (2016)

    ADS  Google Scholar 

  48. L Kathawate, S Sproules, O Pawar, G Markad, S Haram, V Puranik and S Gawali, J. Mol. Struct. 1048, 223 (2013)

    ADS  Google Scholar 

  49. N Smrecki, O Jovic, V Stilinovic, B Kukovec, M Dakovic and Z Popovic, Inorg. Chim. Acta 453, 95 (2016)

    Google Scholar 

  50. P Ghosh, A Chowdhury, S Saha, M Ghosh, M Pal, N Murmu and P Banerjee, Inorg. Chim. Acta 429, 99 (2015)

    Google Scholar 

  51. P Stoch, A Stoch, M Ciecinska, I Krakowiak and M Sitarz, J. Non Cryst. Solids 450, 48 (2016)

    ADS  Google Scholar 

  52. C Suryanarayana, Prog. Mater. Sci. 46, 1 (1998)

    Google Scholar 

  53. N Pinna, Progr. Colloid Polym. Sci. 130, 29 (2005)

    Google Scholar 

  54. J Daniels, K H Hardtl and R Wernicke, Philips. Tech. Rev. 38, 73 (1978)

    ADS  Google Scholar 

  55. W Heywang, J. Am. Ceram. Soc. 47, 484 (1964)

    Google Scholar 

  56. J C Maxwell, Electricity and magnetism (Oxford University Press, London, 1970)

    Google Scholar 

  57. K W Wagner, Ann. Phys. 40, 818 (1993)

    Google Scholar 

  58. C G Koops, Phys. Rev. 83, 121 (1951)

    ADS  Google Scholar 

  59. M K Gergs, G A Gamal and M A Massaud, Ceram. Egypt. J. Solid. 30, 20 (2007).

    Google Scholar 

  60. M Kellati, S Sayouri, N El Moudden, M Elaatmani, A Kaal and M Taibi, Mater. Res. Bull. 39, 867 (2004)

    Google Scholar 

  61. R Tickoo, R P Tandon, K K Bamzai and P N Kotru, Mater. Sci. Eng. B 103, 145 (2003)

    Google Scholar 

  62. Z Gao, C Lu, Y Wang, S Yang, Y Yu and H He, Sci. Rep. 6, 24139 (2016)

    ADS  Google Scholar 

  63. B Tareev, Physics of dielectric materials (Mir Publishers, Moscow, 1979)

    Google Scholar 

  64. S K Barik, R N P Choudhary and A K Singh, Adv. Mater. Lett. 2, 419 (2011)

    Google Scholar 

  65. P Dhak, D Dhak, M Das, K Pramanik and P Pramanik, Mater. Sci. Eng. B 164, 165 (2009)

    Google Scholar 

  66. R Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994)

    ADS  Google Scholar 

  67. S K S Parasar, R N P Choudhary and B S Murty, Mater. Sci. Eng. B 110, 58 (2004)

    Google Scholar 

  68. J Portelles, N S Almodovar, J Fuentes, O Raymond, J Heiras and J M Siqueiros, J. Appl. Phys. 104, 073511 (2008)

  69. Y S Chang, Y H Chang, I G Chen, G J Chen, Y L Chai, T H Fang and S Wu, Ceram. Intern. 30, 2183 (2004)

    Google Scholar 

  70. E Barsoukov and J Ross Macdonald, Impedance spectroscopy theory, experiment and applications (Wiley Interscience, New York, 2005)

    Google Scholar 

  71. A K Jonscher, Nature 267, 673 (1977)

    ADS  Google Scholar 

  72. S K S Parasar, S Chaudhuri, S N Singh and M Ghoranneviss, J. Theor. Appl. Phys. 7, 267 (2013)

    Google Scholar 

  73. L Y Zhu, G Yu, X Q Wang and D Hu, J. Colloid Interface Sci. 336, 438 (2009)

    ADS  Google Scholar 

  74. M Zheng, X Xing, J Deng, L Li, J Zhao, L Qiao and C Fang, J. Alloys Compd. 456, 353 (2007)

    Google Scholar 

  75. R Hong, T Pan, J Qian and H Li, Chem. Eng. J. 119, 71 (2006).

    Google Scholar 

  76. A Verma, M Kar and S A Agnihotry. Sol. Energy Mater. Sol. Cells 91, 1305 (2007)

    Google Scholar 

  77. N Sijakovic-Vujicicic, M Gotić, S Musić, M Ivanda and S Popović, J. Sol-Gel Sci. Technol. 30, 5 (2004)

    Google Scholar 

  78. F Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73 (2012)

    Google Scholar 

  79. J Hao, G Li, Y Li and G Cui, Spectrochim. Acta 131, 102 (2014)

    Google Scholar 

  80. M Nahass, A Ashour, A Atta, H Saad, A Hassanien, A Baradi and E Zaidia, Pramana – J. Phys. 88: 6 (2017)

    ADS  Google Scholar 

  81. C Lee, W Yang and R G Parr, Phys. Rev. B 37, 785 (1988)

    ADS  Google Scholar 

  82. F Weigend, Phys. Chem. Chem. Phys. 8, 1057 (2006)

    Google Scholar 

  83. A D Becke, Phys. Rev. A 38, 3098 (1988)

    ADS  Google Scholar 

  84. M Chakraborty and V K Rai, Pramana – J. Phys. 89: 88 (2017)

    ADS  Google Scholar 

  85. S Sinnecker, L D Slep, E Bill and F Neese, Inorg. Chem. 44, 2245 (2005)

    Google Scholar 

  86. A Klamt and G Schuurmann, J. Chem. Soc. Perkin Trans. 2, 799 (1993)

    Google Scholar 

  87. W Han, T Liu, T Lovell and L Noodleman, J. Comput. Chem. 27, 1292 (2006)

    Google Scholar 

  88. K H Hopmann, A Ghosh and L Noodleman, Inorg. Chem. 48, 9155 (2009)

    Google Scholar 

  89. G M Sandala, K H Hopmann, A Ghosh and L Noodleman, J. Chem. Theory Comput. 7, 3232 (2011)

    Google Scholar 

  90. M Papai and G Vanko, J. Chem. Theory Comput. 9, 5004 (2013)

    Google Scholar 

  91. E F Pettersen, T D Goddard, C C Huang, G S Couch, D M Greenblatt, E C Meng and T E Ferrin, J. Comput. Chem. 25, 1605 (2004)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Science and Engineering Research Board (SERB), DST, New Delhi, India, for providing financial assistance in the form of a research project (EMR / 2014 / 001273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitesh Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, M., Rai, V.K. & Mitra, K. Investigation on the electrical and optical properties of some zinc titanate ceramics. Pramana - J Phys 92, 46 (2019). https://doi.org/10.1007/s12043-018-1694-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1694-y

Keywords

PACS Nos

Navigation