Skip to main content
Log in

Deep sub-barrier breakup dynamics in the \(^8{\mathrm{B}}+{}^{208}{\mathrm{Pb}}\) reaction

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Breakup reactions at deep sub-barrier incident energies are the less investigated in the breakup of loosely-bound systems. Motivated by a recent study by Pakou et al (Phys. Rev. C 102:031601(R), 2020), we further analyse the breakup of \(^8{\mathrm{B}}\) nucleus on a lead target at deep sub-barrier incident energies. It is found that at these energies, continuum–continuum couplings enhance the breakup cross-section. These couplings are otherwise known to hinder the breakup cross-section at energies around and above the Coulomb barrier. We argue that this enhancement can in part explain the known predominance of the breakup channel over other reaction channels at deep sub-barrier energies, and that it may signal a breakup on the outgoing trajectory. The results in this paper also confirm the prediction in the reference above. Due to the astrophysical aspect of \(^8{\mathrm{B}}\) nucleus, this result could have significant implication in nuclear astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I Tanihata et al, Phys. Rev. Lett. 55, 2676 (1985)

    Article  ADS  Google Scholar 

  2. I Tanihata, H Savajols and R Kanungo, Prog. Part. Nucl. Phys. 68, 21 (2013)

    Article  Google Scholar 

  3. V Jha, V V Parkar and S Kailas, Phys. Rep. 845, 1 (2020)

    Article  ADS  Google Scholar 

  4. L F Canto et al, Phys. Rep. 596, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. L F Canto et al, Eur. Phys. J. A 56, 281 (2020)

    Article  ADS  Google Scholar 

  6. B B Back et al, Rev. Mod. Phys. 86, 317 (2014)

    Article  ADS  Google Scholar 

  7. B Mukeru, M L Lekala and A S Denikin, Nucl. Phys. A 935, 18 (2015)

    Article  ADS  Google Scholar 

  8. L F Canto et al, Phys. Rev. C 80, 047601 (2009)

    Article  ADS  Google Scholar 

  9. J Lubian et al, Phys. Rev. C 79, 064605 (2009)

    Article  ADS  Google Scholar 

  10. F M Nunes and I J Thompson, Phys. Rev. C 57, R2818 (1998), Phys. Rev. C 59, 2652 (1999)

  11. B Mukeru, G J Rampho and M L Lekala, J. Phys. G: Nucl. Part. Phys. 45, 045101 (2018)

  12. A Pakou et al, Eur. Phys. J. A 51, 55 (2015)

    Article  ADS  Google Scholar 

  13. A Pakou et al, Phys. Rev. C 102, 031601(R) (2020)

    Article  ADS  Google Scholar 

  14. C A Bertulani, Phys. Rev. C 49, 2688 (1994)

    Article  ADS  Google Scholar 

  15. H Esbensen, G F Bertsch and K A Snover, Phys. Rev. Lett. 94, 042502 (2005)

    Article  ADS  Google Scholar 

  16. K J Cook et al, Phys. Rev. C 97, 021601(R) (2018)

    Article  ADS  Google Scholar 

  17. K J Cook et al, Phys. Rev. Lett. 122, 102501 (2019)

    Article  ADS  Google Scholar 

  18. K J Cook et al, Phys. Rev. C 93, 064604 (2016)

    Article  ADS  Google Scholar 

  19. S Kalkal et al, Phys. Rev. C 93, 044605 (2016)

    Article  ADS  Google Scholar 

  20. E C Simpson et al, Phys. Rev. C 93, 024605 (2016)

    Article  ADS  Google Scholar 

  21. A G Camacho, A Diaz-Torres and H Q Zhang, Phys. Rev. C 99, 054615 (2019)

    Article  ADS  Google Scholar 

  22. A Diaz-Torres and D Quraishi, Phys. Rev. C 97, 024611 (2018)

    Article  ADS  Google Scholar 

  23. B Mukeru and M L Lekala, Phys. Rev. C 94, 024602 (2016)

    Article  ADS  Google Scholar 

  24. A G Camacho et al, Phys. Rev. C 91, 014607 (2015)

    Article  ADS  Google Scholar 

  25. J P Fernández-García et al, Phys. Rev. C 92, 054602 (2015)

    Article  ADS  Google Scholar 

  26. B Mukeru, G J Rampho and M L Lekala, Nucl. Phys. A 969, 60 (2018)

    Article  ADS  Google Scholar 

  27. A Diaz-Torres and I J Thompson, Phys. Rev. C 65, 024606 (2002)

    Article  ADS  Google Scholar 

  28. B Mukeru, M L Lekala and G J Rampho, J. Phys. G: Nucl. Part. Phys. 42, 085110 (2015)

  29. N Austern et al, Phys. Rep. 154, 125 (1987)

    Article  ADS  Google Scholar 

  30. Y Iseri et al, Prog. Theor. Phys. Suppl. 89, 84 (1986)

    Article  ADS  Google Scholar 

  31. L F Canto and M S Hussein, Scattering theory of molecules, atoms and nuclei (World Scientific Publishing Co. Pvt. Ltd., Singapore, 2013)

    Book  Google Scholar 

  32. I J Thompson and F M Nunes, Nuclear reactions for astrophysics (Cambridge University Press, New York, 2009), See also www.fresco.org.uk

  33. P Descouvemont L F Canto and M S Hussein, Phys. Rev. C 95, 014604 (2017)

    Article  ADS  Google Scholar 

  34. K Hagino et al, Phys. Rev. C 61, 037602 (2000)

    Article  ADS  Google Scholar 

  35. G R Satchler et al, Ann. Phys. 178, 110 (1987)

    Article  ADS  Google Scholar 

  36. W Wang et al, Chin. Phys. C 41, 030003 (2017), See also at https://www.nndc.bnl.gov/nudat2/

  37. H Esbensen and G F Bertsch, Nucl. Phys. A 600, 37 (1996)

    Article  ADS  Google Scholar 

  38. J Cook, Nucl. Phys. A 388, 153 (1982)

    Article  ADS  Google Scholar 

  39. M Mazzocco et al, Phys. Rev. C 100, 024602 (2019)

    Article  ADS  Google Scholar 

  40. L C Chamon et al, Phys. Rev. C 66, 014610 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Mukeru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukeru, B., Ndala, L.V. & Lekala, M.L. Deep sub-barrier breakup dynamics in the \(^8{\mathrm{B}}+{}^{208}{\mathrm{Pb}}\) reaction. Pramana - J Phys 95, 106 (2021). https://doi.org/10.1007/s12043-021-02146-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02146-5

Keywords

PACS Nos

Navigation