Skip to main content
Log in

Exploring breakup coupling effect in \(^{7}\)Li+\(^{92,100}\)Mo elastic scattering around Coulomb barrier energies

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Elastic scattering angular distributions have been measured for \(^{7}\)Li+\(^{92,100}\)Mo systems in the bombarding energy range of 0.85 to almost two times the Coulomb barrier. The measured elastic scattering angular distributions are fitted using optical model to investigate energy dependence of the real and imaginary strength parameters with phenomenological Woods-Saxon and double folding S\({\tilde{a}}\)o Paulo potentials. Both interaction potential models simulate similar patterns to energy dependence sustaining the same consequence of breakup threshold anomaly. The results of Continuum Discretized Coupled Channels (CDCC) Calculations with inclusion of the breakup coupling of the projectile compares experimental elastic scattering angular distribution better for the \(^{7}\)Li+\(^{92,100}\)Mo systems rather than excluding breakup coupling. A systematic behaviour of total reaction cross section on target and projectile dependency has been investigated by including a wide range of target mass and tightly to weakly bound projectiles. A comparative study on obtained breakup and reaction cross sections has also been carried out for \(^{7}\)Li+\(^{92,100}\)Mo systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The potential behavior of \(^7\mathrm{Li}+^{92,100}\) systems indicates the presence of breakup threshold anomaly around the Coulomb barrier. In light and middle mass range no consistent behavior of Threshold Behavior or Breakup Threshold Behavior is concluded. In heavy mass range no such discrepancy has been reported yet.]

References

  1. F. Torabi, E.F. Aguilera, O.N. Ghodsi, A. Gómez-Camacho, Nucl. Phys. A 994, 121661 (2020)

    Article  Google Scholar 

  2. L.F. Canto, P.R.S. Gomes, R. Donangelo, J. Lubian, M.S. Hussein, Phys. Rep. 596, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  3. J.J. Kolata, V. Guimarães, E.F. Aguilera, Eur. Phys. J. A 52, 123 (2016)

    Article  ADS  Google Scholar 

  4. M.A. Nagarajan, C.C. Mahaux, G.R. Satchler, Phys. Rev. Lett. 54, 1136 (1985)

    Article  ADS  Google Scholar 

  5. G.R. Satchler, Phys. Rep. 199, 147 (1991)

    Article  ADS  Google Scholar 

  6. M.E. Brandan, G.R. Satchler, Phys. Rep. 285, 143 (1997)

    Article  ADS  Google Scholar 

  7. C. Mahaux, H. Ngô, G.R. Satchler, Nucl. Phys. A 449, 354 (1986)

    Article  ADS  Google Scholar 

  8. M.S. Hussein, P.R.S. Gomes, J. Lubian, L.C. Chamon, Phys. Rev. C 73, 044610 (2006)

    Article  ADS  Google Scholar 

  9. J. Lubian, T. Correa, P.R.S. Gomes, L.F. Canto, Phys. Rev. C 78, 064615 (2008)

    Article  ADS  Google Scholar 

  10. J. Lubian, T. Correa, E.F. Aguilera, L.F. Canto, A. Gomez-Camacho, E.M. Quiroz, P.R.S. Gomes, Phys. Rev. C 79, 064605 (2009)

    Article  ADS  Google Scholar 

  11. F. Gollan, D. Abriola, A. Arazi, O.A. Capurro, M.A. Cardona, E. de Barbará, D. Hojman, G.V. Martí, A.J. Pacheco, D. Rodrigues, J.E. Testoni, Nucl. Phys. A 979, 87 (2018)

    Article  ADS  Google Scholar 

  12. F. Gollan, D. Abriola, A. Arazi, M.A. Cardona, E. de Barbará, D. Hojman, R.M. Id Betan, G.V. Martí, A.J. Pacheco, D. Rodrigues, M. Togneri, Nucl. Phys. A 1000, 121789 (2020)

    Article  Google Scholar 

  13. J.M. Figueira, J.O. Fernandez Niello, D. Abriola, A. Arazi, O.A. Capurro, E. d Barbará, G.V. Martínez, D.M. Heimann, A.E. Negri, A.J. Pacheco et al., Phys. Rev. C 75, 017602 (2007)

    Article  ADS  Google Scholar 

  14. L. Fimiani, J.M. Figueira, G.V. Martí, J.E. Testoni, A.J. Pacheco, W.H.Z. Cárdenas, A. Arazi, O.A. Capurro, M.A. Cardona, P. Carnelli et al., Phys. Rev. C 86, 044607 (2012)

    Article  ADS  Google Scholar 

  15. N.N. Deshmukh, S. Mukherjee, D. Patel, N.L. Singh, P.K. Rath, B.K. Nayak, D.C. Biswas, S. Santra, E.T. Mirgule, L.S. Danu et al., Phys. Rev. C 83, 024607 (2011)

    Article  ADS  Google Scholar 

  16. J.M. Figueira, J.O. Fernandez Niello, A. Arazi, O.A. Capurro, P. Carnelli, L. Fimiani, G.V. Martí, D.M. Heimann, A.E. Negri, A.J. Pacheco et al., Phys. Rev. C 81, 024613 (2010)

    Article  ADS  Google Scholar 

  17. A. Pakou, N. Alamanos, A. Lagoyannis, A. Gillibert, E. Pollacco, P. Assimakopoulos, G. Doukelis, K. Ioannides, D. Karadimos, D. Karamanis et al., Phys. Lett. B 556, 21 (2003)

    Article  ADS  Google Scholar 

  18. A. Pakou, N. Alamanos, G. Doukelis, A. Gillibert, G. Kalyva, M. Kokkoris, S. Kossionides, A. Lagoyannis, A. Musumarra, C. Papachristodoulou et al., Phys. Rev. C 69, 054602 (2004)

    Article  ADS  Google Scholar 

  19. J.M. Figueira, D. Abriola, J.O. Fernandez Niello, A. Arazi, O.A. Capurro, E. de Barbará, G.V. Martí, D. Martínez Heimann, A.J. Pacheco, J.E. Testoni et al., Phys. Rev. C 73, 054603 (2006)

    Article  ADS  Google Scholar 

  20. D. Patel, S. Santra, S. Mukherjee, B.K. Nayak, P.K. Rath, V.V. Parkar, R.K. Choudhury, Pramana J. Phys. 81, 587–602 (2013)

    Article  ADS  Google Scholar 

  21. A. Pakou, Phys. Rev. C 78, 067601 (2008)

    Article  ADS  Google Scholar 

  22. F.A. Souza, L.A.S. Leal, N. Carlin, M.G. Munhoz, R. Liguori Neto, M. M. d Moura, A.A.P. Suaide, E.M. Szanto, ASd. Toledo, J. Takahashi, Phys. Rev. C 75, 044601 (2007)

    Article  ADS  Google Scholar 

  23. A.M.M. Maciel, P.R.S. Gomes, J. Lubian, R.M. Anjos, R. Cabezas, G.M. Santos, C. Muri, S.B. Moraes, R.L. Neto, N. Added et al., Phys. Rev. C 59, 2103 (1999)

    Article  ADS  Google Scholar 

  24. D. Patel, S. Mukherjee, D.C. Biswas, B.K. Nayak, Y.K. Gupta, L.S. Danu, S. Santra, E.T. Mirgule, Phys. Rev. C 91, 054614 (2015)

    Article  ADS  Google Scholar 

  25. N. Keeley, S. Bennett, N. Clarke, B. Fulton, G. Tungate, P. Drumm, M. Nagarajan, J. Lilley, Nucl. Phys. A 571, 326 (1994)

    Article  ADS  Google Scholar 

  26. S. Dubey, S. Mukherjee, D.C. Biswas, B.K. Nayak, D. Patel, G.K. Prajapati, Y.K. Gupta, B.N. Joshi, L.S. Danu, S. Mukhopadhyay et al., Phys. Rev. C 89, 014610 (2014)

    Article  ADS  Google Scholar 

  27. (2020) http://www.iuac.res.in/elab/das/ppdas/Tutorials/fuman.html

  28. A. Chatterjee, LAMPS: Linux Advanced Multiparameter System (2008), http://www.tifr.res.in/~pell/lamps.html

  29. I. J. Thompson, FRESCO:version FRES 3.1 (2019), http://www.fresco.org.uk/source/fres-v31.html

  30. A. Winther, Nucl. Phys. A 572, 191 (1994)

    Article  ADS  Google Scholar 

  31. D. Abriola, D. DiGregorio, J.E. Testoni, A. Etchegoyen, M.C. Etchegoyen, J.O. Fernández Niello, A.M.J. Ferrero, S. Gil, A.O. Macchiavelli, A.J. Pacheco et al., Phys. Rev. C 39, 546 (1989)

    Article  ADS  Google Scholar 

  32. D. Abriola, A.A. Sonzogni, M. di Tada, A. Etchegoyen, M.C. Etchegoyen, J.O. Fernández Niello, S. Gil, A.O. Macchiavelli, A.J. Pacheco, R. Piegaia et al., Phys. Rev. C 46, 244 (1992)

    Article  ADS  Google Scholar 

  33. L.C. Chamon, D. Pereira, M.S. Hussein, M.A. Cândido Ribeiro, D. Galetti, Phys. Rev. Lett. 79, 5218 (1997)

    Article  ADS  Google Scholar 

  34. L.C. Chamon, B.V. Carlson, L.R. Gasques, D. Pereira, C. De Conti, M.A.G. Alvarez, M.S. Hussein, M.A. Cândido Ribeiro, E.S. Rossi, C.P. Silva, Phys. Rev. C 66, 014610 (2002)

    Article  ADS  Google Scholar 

  35. A. Diaz-Torres, I.J. Thompson, C. Beck, Phys. Rev. C 68, 044607 (2003)

    Article  ADS  Google Scholar 

  36. A. Gómez Camacho, E. Aguilera, E. Martínez Quiroz, P. Gomes, J. Lubian, L. Canto, Nucl. Phys. A 833, 156 (2010)

    Article  ADS  Google Scholar 

  37. P.R.S. Gomes, R.M. Anjos, C. Muri, J. Lubian, I. Padron, L.C. Chamon, R.L. Neto, N. Added, J.O. Fernández Niello, G.V. Martí et al., Phys. Rev. C 70, 054605 (2004)

    Article  ADS  Google Scholar 

  38. P.R.S. Gomes, M.D. Rodríguez, G.V. Martí, I. Padron, L.C. Chamon, J.O. Fernández Niello, O.A. Capurro, A.J. Pacheco, J.E. Testoni, A. Arazi et al., Phys. Rev. C 71, 017601 (2005)

    Article  ADS  Google Scholar 

  39. P. Gomes, J. Lubian, B. Paes, V. Garcia, D. Monteiro, I. Padrón, J. Figueira, A. Arazi, O. Capurro, L. Fimiani et al., Nucl. Phys. A 828, 233 (2009)

    Article  ADS  Google Scholar 

  40. J. Lubian, T. Correa, B. Paes, J. Figueira, D. Abriola, J. Fernandez Niello, A. Arazi, O. Capurro, E. de Barbará, G. Martí et al., Nucl. Phys. A 791, 24 (2007)

    Article  ADS  Google Scholar 

  41. P. Amador-Valenzuela, A.E.F. Martinez-Quiroz, D. L, J.C. MR, J. Phys. Conf. Ser. 876, 012002 (2017)

    Article  Google Scholar 

  42. N. Keeley, K.W. Kemper, K. Rusek, Phys. Rev. C 65, 014601 (2001)

    Article  ADS  Google Scholar 

  43. P.R.S. Gomes, M.D. Rodríguez, G.V. Martí, I. Padron, L.C. Chamon, J.O. Fernández Niello, O.A. Capurro, A.J. Pacheco, J.E. Testoni, A. Arazi et al., Phys. Rev. C 71, 034608 (2005)

    Article  ADS  Google Scholar 

  44. N.N. Deshmukh, S. Mukherjee, B.K. Nayak, D.C. Biswas, S. Santra, E.T. Mirgule, S. Appannababu, D. Patel, A. Saxena, R.K. Choudhury et al., Eur. Phys. J. A 47, 118 (2011)

    Article  ADS  Google Scholar 

  45. H. Wojciechowski, N.B.J. Tannous, R.H. Davis, D. Stanley, M. Golin, F. Petrovich, Phys. Rev. C 17, 2126 (1978)

    Article  ADS  Google Scholar 

  46. H. Kumawat, C. Joshi, V. Parkar, V. Jha, B. Roy, Y. Sawant, P. Rout, E. Mirgule, R. Singh, N. Singh et al., Nucl. Phys. A 1002, 121973 (2020)

    Article  Google Scholar 

  47. C. Joshi, A. S. D. Kabiraj, H. Kumawat, N. Singh, Proceedings of the DAE Symp. on Nucl. Phys. 63 (2018)

  48. T. Wada, Nucl. Phys. A 307, 425 (1978)

    Article  ADS  Google Scholar 

  49. P. Mohr, D. Galaviz, Z. Fulop, G. Gyurky, G.G. Kiss, E. Somorjai, Phys. Rev. C 82, 047601 (2010)

    Article  ADS  Google Scholar 

  50. E.E. Gross, T.P. Cleary, J.L.C. Ford, D.C. Hensley, K.S. Toth, F.T. Baker, A. Scott, C.R. Bingham, J. A. Vrba Phys. Rev. C 29, 459 (1984)

    Article  ADS  Google Scholar 

  51. N. Keeley, K.W. Kemper, K. Rusek, Eur. Phys. J. A 50, 145 (2014)

    Article  ADS  Google Scholar 

  52. J. Lei, A.M. Moro, Phys. Rev. Lett. 122, 042503 (2019)

    Article  ADS  Google Scholar 

  53. K.J. Cook, E.C. Simpson, L.T. Bezzina, M. Dasgupta, D.J. Hinde, K. Banerjee, A.C. Berriman, C. Sengupta, Phys. Rev. Lett. 122, 102501 (2019)

    Article  ADS  Google Scholar 

  54. R. Navarro Perez, J. Lei, Phys. Lett. B 795, 200 (2019)

    Article  Google Scholar 

  55. A. Mason, R. Chatterjee, L. Fortunato, A. Vitturi, Eur. Phys. J. A 39, 107 (2009)

    Article  ADS  Google Scholar 

  56. S.K. Pandit, A. Shrivastava, K. Mahata, V.V. Parkar, R. Palit, N. Keeley, P.C. Rout, A. Kumar, K. Ramachandran, S. Bhattacharya, Phys. Rev. C 96, 044616 (2017)

    Article  ADS  Google Scholar 

  57. S.K. Pandit, A. Shrivastava, K. Mahata, N. Keeley, V.V. Parkar, R. Palit, P.C. Rout, K. Ramachandran, A. Kumar, S. Bhattacharyya, Phys. Lett. B 820, 136570 (2021)

    Article  Google Scholar 

  58. S. Raman et al., At. Data Nucl. Data Tables 78, 1 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Inter University Accelerator Centre (IUAC), New Delhi for financial support and Pelletron crew for excellent delivery of the beam. C. Joshi would like to acknowledge Department of Science and Technology (DST), Government of India for awarding Inspire Fellowship (IF160959) as financial support. D. Patel would like to acknowledge the financial support received from the Department of Science and Technology, India through the SERB-National Post Doctoral Fellowship (N-PDF) scheme.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Maria Borge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, C., Kumawat, H., Singh, R.K. et al. Exploring breakup coupling effect in \(^{7}\)Li+\(^{92,100}\)Mo elastic scattering around Coulomb barrier energies. Eur. Phys. J. A 58, 40 (2022). https://doi.org/10.1140/epja/s10050-022-00690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00690-1

Navigation