Skip to main content
Log in

The effect of dust size distribution on shock wave in quantum dusty plasma

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Present paper studies the contribution of both the quantum effect and the dust size distribution effect on the shock wave characters. It is concluded that the quantum effect of dust particles is negligible, while the quantum effects of both electrons and ions on the shock wave of a quantum dusty plasma cannot be neglected in certain cases. It is found that the speed and the amplitude of the shock wave, considering the dust size distribution, are larger than that of the quantum dusty plasma with the average dust size of a monosized dust plasma. Furthermore, the speed and the amplitude of the shock wave increase, while the width of the shock wave decreases as the ratios of the maximum dust size to the minimum one increases. The quantum effects may affect both the amplitude and width of the shock wave, while it has no effect on the shock wave speed. The width of the shock wave increases, while its amplitude decreases as \(H_e\) and \(H_i\) increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M Horanyi, Annu. Rev. Astron. Astrophys. 34, 383 (1996)

    Article  ADS  Google Scholar 

  2. O Havnes, F Melandso, C la Hoz, T K Aslaksen and T Hartquist, Phys. Scr. 45, 535 (1992)

    Article  ADS  Google Scholar 

  3. D A Mendis and M Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994)

    Article  ADS  Google Scholar 

  4. S V Vladimirov and K Ostrikov, Phys. Rep. 393, 175 (2004)

    Article  ADS  Google Scholar 

  5. N N Rao, P K Shukla and M Y Yu, Planet. Space Sci. 38, 543 (1990)

    Article  ADS  Google Scholar 

  6. P K Shukla and V P Silin, Phys. Scr. 45, 508 (1992)

    Article  ADS  Google Scholar 

  7. A Barkan, R L Merlino and N DAngelo, Phys. Plasmas 2, 10 (1995)

    Google Scholar 

  8. F Melandso, Phys. Plasmas 3, 3890 (1996)

    Article  ADS  Google Scholar 

  9. F Li and O Havnes, Phys. Rev. E 64, 066407 ( 2001)

    Article  ADS  Google Scholar 

  10. W Lin, M S Murillo and Y Feng, Phys. Rev. E 100, 4 (2019)

    Google Scholar 

  11. M Marciante and M S Murillo, Phys. Rev. Lett. 118, 2 (2017)

    Article  Google Scholar 

  12. P K Shukla and A A Mamun, Introduction to dusty plasma physics (IOP Publishing Ltd., England, 2002)

    Book  Google Scholar 

  13. V E Fortov, A V Ivlev, S A Khrapak and G E Morfill, Phys. Rep. 421, 1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. A Brattll, Q Havens and F Melandso, J. Plasma Phys. 58, 691 (1997)

    Article  ADS  Google Scholar 

  15. V W Chow, D A Mendis and M J Rosenberg, J. Geophys. Res. 98, 19056 (1993)

    ADS  Google Scholar 

  16. M Horanyi and C K Goertz, Astrophys. J. 361, 1 (1990)

    Article  Google Scholar 

  17. W S Duan, Phys. Plasmas 8, 3583 (2001)

    Article  ADS  Google Scholar 

  18. P Meuris, F Verheest and G S Lakhina, Planet. Space Sci. 45, 4 (1997)

    Google Scholar 

  19. W S Duan and J Parkes, Phys. Rev. E 68, 067402 (2003)

    Article  ADS  Google Scholar 

  20. W S Duan and Y R Shi, Chaos Solitons Fractals 18, 321 (2003)

    Article  ADS  Google Scholar 

  21. W S Duan, H J Yang, Y R Shi and K P Lu, Phys. Lett. A 361, 368 (2007)

    Article  ADS  Google Scholar 

  22. G Manfredi and F Haas, Phys. Rev. B 64, 075316 (2001)

    Article  ADS  Google Scholar 

  23. C Gardner, SIAM Soc. Ind. Appl. Math. J. Appl. Math. 54, 409 (1994)

    Article  ADS  Google Scholar 

  24. F Haas, G Manfredi and M Feix, Phys. Rev. E 62, 2763 (2000)

    Article  ADS  Google Scholar 

  25. F Haas, L G Garcia, J Goedert and G Manfredi, Phys. Plasmas 10, 3858 (2003)

    Article  ADS  Google Scholar 

  26. F Haas, Phys. Plasmas 12, 062117 (2005)

    Article  ADS  Google Scholar 

  27. J F Han, D N Gao, H Zhang, X Y Wang and W S Duan, Front. Phys. 10, 105201 (2015)

    Article  ADS  Google Scholar 

  28. D Kremp, T Bornath, M Bonitz and M Schlanges, Phys. Rev. E 60, 4725 (1999)

    Article  ADS  Google Scholar 

  29. P A Makowich, C A Ringhofer and C Schmeiser, Semiconductor equations (Springer, Vienna, 1990)

    Book  Google Scholar 

  30. Y D Jung, Phys. Plasmas 8, 3842 (2001)

    Article  ADS  Google Scholar 

  31. S Ali and P K Shukla, Phys. Plasmas 13, 022313 (2006)

    Article  ADS  Google Scholar 

  32. W F El-Taibany and M Wadati, Phys. Plasmas 14, 042302 (2007)

    Article  ADS  Google Scholar 

  33. S K El-Labany, N M El-Siragy, W F El-Taibany and E E Behery, Phys. Plasmas 16, 093701 (2009)

    Article  ADS  Google Scholar 

  34. J Goswami, S Chandra and B Ghosh, Astrophys. Space Sci. 364, 4 (2019)

    Article  Google Scholar 

  35. J Goswami, S Chandra, J Sarkar, S Chaudhuri and B Ghosh, Breast Cancer Online 38, 1 (2020)

    Google Scholar 

  36. X Qi, Y Xu, W S Duan and L Yang, Phys. Plasmas 21, 1 (2014)

    Google Scholar 

  37. S Sarkar, S Ghosh, M Khan and M R Gupta, Phys. Plasmas 18, 093703 (2011)

    Article  ADS  Google Scholar 

  38. H W Yang, Z H Xu, D Z Yang, X R Feng, B S Yin and H H Dong, Adv. Diff. Equ. 2016, 1 (2016)

    Article  Google Scholar 

  39. G Manfredi, Fields Inst. Commun. 46, 263 (2005)

    Google Scholar 

  40. F Haas, L G Garcia, J Goedert and G Manfriedi, Phys. Plasmas 10, 3858 (2003)

    Article  ADS  Google Scholar 

  41. P K Shukla and S Ali, Phys. Plasmas 12, 114502 (2005)

    Article  ADS  Google Scholar 

  42. S A El-Tantawy, Astrophys. Space Sci. 361, 249 (2016)

    Article  ADS  Google Scholar 

  43. H W Yang et al, Adv. Diff. Equ. 2016(1), 1 (2016)

    Article  Google Scholar 

  44. G J He, W S Duan and D X Tian, Phys. Plasmas 15, 043702 (2008)

    Article  ADS  Google Scholar 

  45. E F EL-Shamy and A M Al-Asbali, Phys. Plasmas 21, 093701 (2014).

  46. J Zhang, Y Yang, Y X Xu, L Yang, X Qi and W S Duan, Phys. Plasmas 21, 103706 (2014)

    Article  ADS  Google Scholar 

  47. E C Whipple, T G Northrop and D A Mendis, J. Geophys. Res. Space Phys. 90, A8 (1985)

    Article  Google Scholar 

  48. U D Angelis, V Formisano and M Giordano, J. Plasma Phys. 40, 3 (1988)

    Article  Google Scholar 

  49. A A Mamun and M N Alam, Indian J. Phys. 72(5), 559 (1998)

    Google Scholar 

  50. N N Rao and P K Shukla, Planet. Space Sci. 42(3), 221 (1994)

    Article  ADS  Google Scholar 

  51. T S Gill, H Kaur and N S Saini, J. Plasma Phys. 70(4), 481–495 (2004)

    Article  ADS  Google Scholar 

  52. H R Pakzad and K Javidan, Chaos Solitons Fractals 42(5), 2904 (2009)

    Article  ADS  Google Scholar 

  53. S V Singh, N N Rao and P K Shukla, J. Plasma Phys. 60(3), 551 (1998)

    Article  ADS  Google Scholar 

  54. J K Xue and L P Zhang, Chaos Solitons Fractals 32(2), 592 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  55. S K El-Labany et al, Phys. Plasmas 16(9), 175 (2009)

    Article  Google Scholar 

  56. N A El-Bedwehy and W M Moslem, Astrophys. Space Sci. 335, 435 (2011)

    Article  ADS  Google Scholar 

  57. P Meuris, Planet. Space Sci. 45, 1171 (1997)

    Article  ADS  Google Scholar 

  58. H J Ren, Z W Wu, J T Cao and P K Chu, Phys. Plasmas 16, 103705 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants Nos 11965019 and 11847142).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heng Zhang or Wen-Shan Duan.

Appendices

Appendix A

We have taken the following parameters [27, 32, 33, 58]: \(Z_d=10^{3},\) \(m_d=2\times 10^{-17}\) kg, \(m_e=0.91\times 10^{-30}\) kg, \(m_i=2 \times 10^{-26}\) kg, \(n_d=1.5\times 10^{27}\) m\(^{-3}\), \(n_i=2\times 10^{30}\) m\(^{-3}\), \(\hbar =1.05\times 10^{-34} \)J\(\cdot \)s, \(T_{\mathrm {eff}}=3.1\times 10^{-13}\) J, \(\mu _{i}=1.3\), \(\mu _{e}=0.3\). We have

$$\begin{aligned} H_{e}= & {} \sqrt{\frac{\hbar ^{2}\overline{Z_{d0}}\omega _{pd}^{2}}{m_{e}c_{d}^{4}}}\approx 3.4 \end{aligned}$$
(A.1)
$$\begin{aligned} H_{i}= & {} \sqrt{\frac{\hbar ^{2}\overline{Z_{d0}}\omega _{pd}^{2}}{m_{i}c_{d}^{4}}}\approx 0.02 \end{aligned}$$
(A.2)
$$\begin{aligned} H_{d}= & {} \sqrt{\frac{\hbar ^{2}\overline{Z_{d0}}\omega _{pd}^{2}}{\overline{m}_{d}c_{d}^{4}}}\approx 7\times 10^{-7}. \end{aligned}$$
(A.3)

Hence, the contributions of dust and ion are much lower than the electron.

Appendix B

We have model fluid equations

$$\begin{aligned}&{\partial n_{dj} \over \partial t} +\nabla \cdot (n_{dj} \mathbf {u_{dj}} )=0 \end{aligned}$$
(B.1)
$$\begin{aligned}&{\partial \mathbf {u_{dj}} \over \partial t} +\mathbf {u_{dj}}(\nabla \cdot \mathbf {u_{dj}})=\frac{Z_{dj}}{m_{dj}}\nabla \phi \nonumber \\&-\frac{\sigma _d }{m_{dj}}n_{dj}\frac{Z_{dj}}{m_{dj}}\Omega (\mathbf {u_{dj}}\times \mathbf {x}) +\frac{\eta }{m_{dj}}\nabla ^{2}\mathbf {u_{dj}}\nonumber \\&+\frac{H_{d}^{2}}{2m_{dj}^{2}}\nabla \left( \frac{\nabla ^{2}\sqrt{n_{dj}}}{\sqrt{n_{dj}}}\right) \end{aligned}$$
(B.2)
$$\begin{aligned}&\nabla ^{2}\phi =\mu _{e}n_e-\mu _i n_i+\sum _{j=1}^{N} Z_{dj}n_{dj} \end{aligned}$$
(B.3)
$$\begin{aligned}&\begin{aligned} 0=\nabla \phi -\sigma _{e}n_{e}\nabla n_{e} +\frac{H_{e}^{2}}{2}\nabla \left( \frac{\nabla ^{2}\sqrt{n_{e}}}{\sqrt{n_{e}}}\right) \end{aligned} \end{aligned}$$
(B.4)
$$\begin{aligned}&\begin{aligned} 0=-\nabla \phi -\sigma _{i}n_{i}\nabla n_{i} +\frac{H_{i}^{2}}{2}\nabla \left( \frac{\nabla ^{2}\sqrt{n_{i}}}{\sqrt{n_{i}}}\right) . \end{aligned} \end{aligned}$$
(B.5)

We introduce the stretched coordinates

$$\begin{aligned}&X=\epsilon (x-\lambda t),\quad Y=\epsilon y, \quad =\epsilon z \end{aligned}$$
(B.6)
$$\begin{aligned}&T=\epsilon ^{3}t \end{aligned}$$
(B.7)

and

$$\begin{aligned}&{\partial \over \partial x}=\epsilon {\partial \over \partial X} \end{aligned}$$
(B.8)
$$\begin{aligned}&{\partial \over \partial y}=\epsilon {\partial \over \partial Y} \end{aligned}$$
(B.9)
$$\begin{aligned}&{\partial \over \partial z}=\epsilon {\partial \over \partial Z} \end{aligned}$$
(B.10)
$$\begin{aligned}&{\partial ^{2} \over \partial x^{2}}=\epsilon ^{2}{\partial ^{2} \over \partial X^{2}} \end{aligned}$$
(B.11)
$$\begin{aligned}&{\partial \over \partial t}=\epsilon ^{3}{\partial \over \partial T}-\epsilon \lambda {\partial \over \partial X}. \end{aligned}$$
(B.12)

The asymptotic expansions of the perturbed quantities are given as

$$\begin{aligned}&n_{dj}=n_{dj0}+\epsilon ^{2}n_{dj1}+\epsilon ^{4}n_{dj2}+\cdots \nonumber \\&n_{e}=1+\epsilon ^{2}n_{e1}+\epsilon ^{4}n_{e2}+\cdots \nonumber \\&n_{i}=1+\epsilon ^{2}n_{i1}+\epsilon ^{4}n_{i2}+\cdots \nonumber \\&u_{djx}=\epsilon ^{2}u_{djx1}+\epsilon ^{4}u_{djx2}+\cdots \nonumber \\&u_{djy}=\epsilon ^{3}u_{djy1}+\epsilon ^{4}u_{djy2}+\cdots \nonumber \\&u_{djz}=\epsilon ^{3}u_{djz1}+\epsilon ^{4}u_{djz2}+\cdots \nonumber \\&\phi =\epsilon ^{2}\phi _1+\epsilon ^{4}\phi _2+\cdots . \end{aligned}$$
(B.13)

Substituting eqs (B.8)–(B.13) into eqs (B.1)–(B.5), and collecting the powers of \(\epsilon ^{3}\), we assume \(\eta =\epsilon \eta '\)

$$\begin{aligned}&u_{djx1}=\frac{\lambda }{n_{dj0}}n_{dj1} \end{aligned}$$
(B.14)
$$\begin{aligned}&n_{dj1}=\frac{Z_{dj}n_{dj0}}{\sigma _{d}n_{dj0}^{2}-\lambda ^{2}m_{dj}}\phi _{1} \end{aligned}$$
(B.15)
$$\begin{aligned}&u_{djz1}=\left( 1+\frac{\sigma _{d}n_{dj0}^{2}}{\lambda ^{2}m_{dj}-\sigma _{d}n_{dj0}^{2}}\right) \frac{1}{\Omega }{\partial \phi _{1} \over \partial Y} \end{aligned}$$
(B.16)
$$\begin{aligned}&u_{djy1}=-\left( 1+\frac{\sigma _{d}n_{dj0}^{2}}{\lambda ^{2}m_{dj}-\sigma _{d}n_{dj0}^{2}}\right) \frac{1}{\Omega }{\partial \phi _{1} \over \partial Y} \end{aligned}$$
(B.17)
$$\begin{aligned}&0=\mu _e n_{e1}-\mu _in_{i1}+\sum _{j=1}^{N}Z_{di}n_{dj1} \end{aligned}$$
(B.18)
$$\begin{aligned}&n_{e1}=\frac{\phi _1}{\sigma _e} \end{aligned}$$
(B.19)
$$\begin{aligned}&n_{i1}=-\frac{\phi _1}{\sigma _i}. \end{aligned}$$
(B.20)

Collecting terms of the same powers of \(\epsilon ^{4}\), the y- and z-components of the second-order perturbed velocity are calculated as

$$\begin{aligned} u_{djz2}= & {} \frac{\lambda m_{d}}{Z_{dj}\Omega }{\partial u_{djy1} \over \partial X} \end{aligned}$$
(B.21)
$$\begin{aligned} u_{djy2}= & {} -\frac{\lambda m_{d}}{Z_{dj}\Omega }{\partial u_{djz1} \over \partial X}. \end{aligned}$$
(B.22)

From eq. (B.15) and (B.18)–(B.20), we get

$$\begin{aligned} \sum _{j=1}^{N}\frac{n_{dj0}Z_{dj}^{2}}{\lambda ^{2}m_{dj}-\sigma _{d}n_{dj0}^{2}}=1. \end{aligned}$$
(B.23)

We put \(\sigma _d=0\) leading to a simplified linear dispersion relation

$$\begin{aligned} \lambda ^{2}=\sum _{j=1}^{N}\frac{n_{dj0}Z_{dj}^{2}}{m_{dj}}. \end{aligned}$$
(B.24)

Collecting the powers of \(\epsilon ^{5}\), we have

$$\begin{aligned}&{\partial n_{dj1} \over \partial T}-\lambda {\partial n_{dj2} \over \partial X}+{\partial (n_{dj1}u_{djx1}) \over \partial X}+n_{dj0}{\partial u_{djx2} \over \partial X}\nonumber \\&-n_{dj0}\frac{\lambda m_{dj}}{Z_{dj}\Omega ^{2}}\left( 1+\frac{\sigma _{d}n_{dj0}^{2}}{\lambda ^{2}m_{dj}-\sigma _{d}n_{dj0}^{2}}\right) {\partial \over \partial X}{\partial ^{2} \phi _{1} \over \partial Y^{2}}\nonumber \\&-n_{dj0}\frac{\lambda m_{dj}}{Z_{dj}\Omega ^{2}}\left( 1+\frac{\sigma _{d}Z_{dj}n_{dj0}^{2}}{\lambda ^{2}m_{dj}-\sigma _{d}n_{dj0}^{2}}\right) {\partial \over \partial X}{\partial ^{2} \phi _{1} \over \partial Z^{2}}\nonumber \\&=0 \end{aligned}$$
(B.25)
$$\begin{aligned}&{\partial u_{djx1} \over \partial T}-\lambda {\partial u_{djx2} \over \partial X}+u_{djx1}{\partial u_{djx1} \over \partial X}=\frac{Z_{dj}}{m_{dj}}{\partial \phi _{2} \over \partial X}\nonumber \\&-\frac{\sigma _d}{m_{dj}}n_{dj0}{\partial n_{dj2} \over \partial X}-\frac{\sigma _d}{m_{dj}}n_{dj1}{\partial n_{dj1} \over \partial X} \nonumber \\&+\frac{\eta '}{m_{dj}}{\partial ^{2} u_{djx1} \over \partial X^{2}}+\frac{H_{d}^{2}}{4n_{dj0}m_{dj}^{2}}{\partial (\nabla ^{2}n_{dj1}) \over \partial X} \end{aligned}$$
(B.26)
$$\begin{aligned}&\frac{\lambda ^{2}m_{dj}}{Z_{dj}\Omega ^{2}}\left( 1+\frac{\sigma _{d}n_{dj0}^{2}}{\lambda ^{2}m_{dj}-\sigma _{d}n_{dj0}^{2}}\right) {\partial \over \partial Y}{\partial ^{2} \phi _{1} \over \partial X^{2}}\nonumber \\&=\frac{Z_{dj}}{m_{dj}}{\partial \phi _{2} \over \partial Y}-\frac{\sigma _d}{m_{dj}}n_{dj0}{\partial n_{dj2} \over \partial Y}\nonumber \\&-\frac{\sigma _d}{m_{dj}}n_{dj1}{\partial n_{dj1} \over \partial Y}+\frac{H_{d}^{2}}{4n_{dj0}m_{dj}^{2}}{\partial (\nabla ^{2}n_{dj1}) \over \partial Y} \end{aligned}$$
(B.27)
$$\begin{aligned}&\frac{\lambda ^{2}m_{dj}}{Z_{dj}\Omega ^{2}}\left( 1+\frac{\sigma _{d}n_{dj0}^{2}}{\lambda ^{2}m_{dj}-\sigma _{d}n_{dj0}^{2}}\right) {\partial \over \partial Z}{\partial ^{2} \phi _{1} \over \partial X^{2}}\nonumber \\&=\frac{Z_{dj}}{m_{dj}}{\partial \phi _{2} \over \partial Z}-\frac{\sigma _d}{m_{dj}}n_{dj0}{\partial n_{dj2} \over \partial Z}\nonumber \\&-\frac{\sigma _d}{m_{dj}}n_{dj1}{\partial n_{dj1} \over \partial Z} +\frac{H_{d}^{2}}{4n_{dj0}m_{dj}^{2}}{\partial (\nabla ^{2}n_{dj1}) \over \partial Z} \end{aligned}$$
(B.28)
$$\begin{aligned}&\nabla ^{2}\phi _{1}=\mu _{e}n_{e2}-\mu _{i}n_{i2}+\sum _{j=1}^{N}Z_{dj}n_{dj2} \end{aligned}$$
(B.29)
$$\begin{aligned}&0=\nabla \phi _{2}-\sigma _{e}n_{e1}\nabla n_{e1}-\sigma _{e}\nabla n_{e2}+\frac{H_{e}^{2}}{4}\nabla (\nabla ^{2}n_{e1}) \nonumber \\\end{aligned}$$
(B.30)
$$\begin{aligned}&0=-\nabla \phi _{2}-\sigma _{i}n_{i1}\nabla n_{i1}-\sigma _{i}\nabla n_{i2}+\frac{H_{i}^{2}}{4}\nabla (\nabla ^{2}n_{i1}).\nonumber \\ \end{aligned}$$
(B.31)

Solving eqs (B.25)–(B.31) with the aid of eqs (B.14)–(B.24), we get ZK-Burgers equation

$$\begin{aligned}&{\partial \phi _1 \over \partial T}+A\phi _1{\partial \phi _1 \over \partial X}+B{\partial ^{3} \phi _1 \over \partial X^{3}}\nonumber \\&+C{\partial \over \partial X}\left( {\partial ^{2} \phi _1 \over \partial Y^{2}}+{\partial ^{2} \phi _1 \over \partial Z^{2}}\right) -D{\partial ^{2} \phi _1 \over \partial X^{2}}=0, \end{aligned}$$
(B.32)

where the values of A, B, C and D are consistent with eqs (16)–(19).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, LL., Wei, L., Liu, B. et al. The effect of dust size distribution on shock wave in quantum dusty plasma. Pramana - J Phys 95, 111 (2021). https://doi.org/10.1007/s12043-021-02143-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02143-8

Keywords

PACS Nos

Navigation