Skip to main content
Log in

A study of curvature theory for different symmetry classes of Hamiltonian

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We study and present the results of curvature for different symmetry classes (BDI, AIII and A) of model Hamiltonians and also present the transformation of model Hamiltonian from one distinct symmetry class to the other based on the curvature property. We observe the mirror symmetric curvature for the Hamiltonian with BDI symmetry class but there is no evidence of such behaviour for Hamiltonians of AIII symmetry class. We show the origin of torsion and its consequences on the parameter space of topological phase of the system. We find the evidence of torsion for the Hamiltonian of A symmetry class. We present Serret–Frenet equations for all model Hamiltonians in \(\mathbf {R}^3\) space. To the best of our knowledge, this is the first application of curvature theory to the model Hamiltonian of different symmetry classes which belong to the topological state of matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C-K Chiu, J C Y Teo, A P Schnyder and S Ryu, Rev. Mod. Phys. 88(3), 035005 (2016)

  2. M Z Hasan and C L Kane, Rev. Mod. Phys. 82(4), 3045 (2010)

  3. M Sato and Y Ando, Rep. Prog. Phys. 80(7), 076501 (2017)

  4. A Altland and M R Zirnbauer, Phys. Rev. B 55(2), 1142 (1997)

  5. T D Stanescu, Introduction to topological quantum matter & quantum computation (CRC Press, 2016)

  6. T Senthil, Annu. Rev. Condens. Matter Phys. 6(1), 299 (2015)

  7. B A Bernevig and T L Hughes, Topological insulators and topological superconductors (Princeton University Press, 2013)

  8. S Rahul, R Ranjith Kumar, Y R Kartik, A Banerjee and S Sarkar, Phys. Scr. 94(11), 115803 (2019)

  9. R Ranjith Kumar and S Sarkar, Phase Transit. 93(3), (2020)

  10. C G Velasco and B Paredes, arXiv:1907.11460 (2019)

  11. S Sarkar, Sci. Rep. 8(1), 5864 (2018)

  12. V A Toponogov, Differential geometry of curves and surfaces (Springer, 2006)

  13. C Bär, Elementary differential geometry (Cambridge University Press, 2010)

  14. E Abbena, S Salamon and A Gray, Modern differential geometry of curves and surfaces with Mathematica (Chapman and Hall/CRC, 2017)

  15. S M Carroll, Spacetime and geometry. An introduction to general relativity (2004)

  16. B F Schutz, Geometrical methods of mathematical physics (Cambridge University Press, 1980)

  17. B Schutz, A first course in general relativity (Cambridge University Press, 2009)

  18. D-J Zhang, Q-h Wang and J Gong, arXiv:1811.04640 (2018)

  19. A N Pressley, Elementary differential geometry (Springer Science & Business Media, 2010)

  20. P M H Wilson, Curved spaces: From classical geometries to elementary differential geometry (Cambridge University Press, 2007)

  21. Y  Mokrousov  and  F  Freimuth,  arXiv:1407.2847 (2014)

  22. S Montiel and A Ros, Curves and surfaces (American Mathematical Soc., 2009) Vol. 69

  23. D D Sheka, V P Kravchuk, K V Yershov and Y Gaididei, Phys. Rev. B 92(5), 054417 (2015)

  24. A A Lima, C Filgueiras and F Moraes, Eur. Phys. J. B 90(2), 32 (2017)

  25. V D Sabbata and C Sivaram, Spin and torsion in gravitation (World Scientific, 1994)

  26. T L Hughes, R G Leigh and O Parrikar, Phys. Rev. D 88(2), 025040 (2013)

  27. Z V Khaidukov and M A Zubkov, JETP Lett. 108(10), (2018)

    Article  Google Scholar 

  28. M Kolodrubetz, V Gritsev and A Polkovnikov, Phys. Rev. B 88(6), 064304 (2013)

  29. P R Zulkowski, D A Sivak, G E Crooks and M R DeWeese, Phys. Rev. E 86(4), 041148 (2012)

  30. M Lakshmanan, Philos. Trans. R. Soc. A 369(1939), 1280 (2011)

  31. M Lakshmanan, Th W Ruijgrok and C J Thompson, Physica A 84(3), 577 (1976)

  32. M Lakshmanan, Phys. Lett. A 61(1), 53 (1977)

  33. I M Georgescu, S Ashhab and F Nori, Rev. Mod. Phys. 86(1), (2014)

  34. S Sarkar, EPL 110(6), (2015)

  35. S Sarkar, Physica B Condens. Matter 475, (2015)

  36. A Y Kitaev, Phys-USP 44(10S), 131 (2001)

  37. M V Berry, J. Phys. A 18(1), 15 (1985)

  38. M J Ablowitz and A S Fokas, Complex variables: Introduction and applications (Cambridge University Press, 2003)

  39. P Kotetes, Topological insulators and superconductors-Notes of TKMI 2013/2014 guest lectures

  40. K Shiozaki and M Sato, Phys. Rev. B 90(16), 165114 (2014)

  41. Y Niu, S B Chung, C-H Hsu, I Mandal, S Raghu and S Chakravarty, Phys. Rev. B 85(3), 035110 (2012)

  42. G K Yücekaya and H H Hacisalıhoglu, Mathematica Aeterna 3(3), 221 (2013)

Download references

Acknowledgements

SS would like to acknowledge DST (EMR/2017/ 000898) for the funding and RRI library for the books and journals. YRK would like to thank Admar Mutt Education Foundation for the scholarship. The authors would like to acknowledge Dr R Srikanth, Dr B S Ramachandra and Prof. C Sivaram for reading this manuscript critically and for giving useful suggestions. This research was supported in part by the International Centre for Theoretical Sciences (ICTS) during a visit for participating in the program – Geometry and Topology for Lecturers (Code: ICTS/gtl2018/06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartik, Y.R., Kumar, R.R., Rahul, S. et al. A study of curvature theory for different symmetry classes of Hamiltonian. Pramana - J Phys 95, 102 (2021). https://doi.org/10.1007/s12043-021-02134-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02134-9

Keywords

PACS Nos

Navigation