Skip to main content

The Hopf-Levi-Civita Data of Two-Dimensional Metrics

  • Chapter
  • First Online:
Algorithms as a Basis of Modern Applied Mathematics

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 404))

Abstract

The aim of this chapter is to study three 2-dimensional geometries, namely Riemannian, Kähler and Hessian, in a unitary way by using three (local) Hermitian matrices. One of these matrices corresponds to the symmetric matrix of metric while the other two Hermitian matrices is provided by the Christoffel symbols. The secondary diagonal of these Hermitian matrices are generated by the Hopf invariant and its conjugate, where for this notion we adopt the definition of Jensen et al. (Surfaces in classical geometries. A treatment by moving frames. Springer, Cham, 2016 [13]). In the Riemannian case a special view is towards an expression of the Gaussian curvature in terms of these data while in Kähler and Hessian geometry we use the corresponding potential function and a new (again local) differential operator of first order, similar to \(\partial \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chow, B., Knopf, D.: The Ricci Flow: An Introduction. Mathematical Surveys and Monographs 110. American Mathematical Society, Providence, RI (2004). Zbl 1086.53085

    Google Scholar 

  2. Crasmareanu, M.: Killing potentials. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Math. 45(1), 169–176 (1999). Zbl 1011.53032

    Google Scholar 

  3. Crasmareanu, M.: New tools in Finsler geometry: stretch and Ricci solitons. Math. Rep., Buchar. 16(66)(1), 83–93 (2014). Zbl 1313.53091

    Google Scholar 

  4. Crasmareanu, M.: Adapted metrics and Webster curvature on three classes of 3-dimensional geometries. Int. Electron. J. Geom. 7(2), 37–46 (2014). Zbl 1307.53040

    Google Scholar 

  5. Crasmareanu, M.: A complex approach to the gradient-type deformations of conics. Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 10(59) (2), 59–62 (2017). Zbl 06871080, MR3750075

    Google Scholar 

  6. Crasmareanu, M.: A new approach to gradient Ricci solitons and generalizations. Filomat 32(9), 3337–3346 (2018). MR3898903

    Google Scholar 

  7. Crasmareanu, M.: New aspects of two Hessian-Riemannian metrics in plane. Surv. Math. Appl. 15, 217–223 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Crasmareanu, M., Enache, V.: A note on dynamical systems satisfying the Wünschmann-type condition. Int. J. Phys. Sci. 7(42), 5654–5663 (2012)

    Google Scholar 

  9. Crasmareanu, M., Hreţcanu, C.-E.: Golden differential geometry. Chaos Solitons Fractals 38(5), 1229–1238 (2008). MR2456523 (2009k:53059)

    Google Scholar 

  10. Crasmareanu, M., Pişcoran, L.-I.: Wick-Tzitzeica solitons and their Monge-Ampère equation. Int. J. Geom. Methods Mod. Phys. 15(5), Article ID 1850082, 9 p. (2018). Zbl 1395.53005

    Google Scholar 

  11. Fecko, M.: Differential Geometry and Lie Groups for Physicists. Cambridge University Press, Cambridge (2006). Zbl 1121.53001

    Google Scholar 

  12. Hopf, H.: Differential geometry in the large. Seminar lectures New York University 1946 and Stanford University 1956. With a preface by S. S. Chern. 2nd ed., Lecture Notes in Mathematics, 1000, Springer, Berlin (1989). Zbl 0669.53001

    Google Scholar 

  13. Jensen, G.R., Musso, E., Nicolodi L.: Surfaces in Classical Geometries. A Treatment by Moving Frames. Universitext. Springer, Cham (2016). Zbl 1347.53001

    Google Scholar 

  14. Jerrard, R.: Curvatures of surfaces associated with holomorphic functions. Colloq. Math. 21, 127–132 (1970). Zbl 0203.23802

    Google Scholar 

  15. Kenmotsu, K.: Surfaces with Constant Mean Curvature. Translations of Mathematical Monographs 221. American Mathematical Society, Providence, RI (2003). Zbl 1042.53001

    Google Scholar 

  16. Levine, J.: Classification of collineations in projectively and affinely connected spaces of two dimensions. Ann. Math. 52(2), 465–477 (1950). Zbl 0038.34603

    Google Scholar 

  17. Munteanu, G.: Complex spaces in Finsler, Lagrange and Hamilton Geometries. Fundamental Theories of Physics, vol. 141. Kluwer Academic Publishers, Dordrecht (2004). MR2102340 (2005g:53133)

    Google Scholar 

  18. Opozda, B.: A classification of locally homogeneous connections on \(2\)-dimensional manifolds. Differ. Geom. Appl. 21(2), 173–198 (2004). Zbl 1063.53024

    Google Scholar 

  19. Opozda, B.: A realization problem in statistical and affine geometry. J. Geom. Phys. 131, 147–159 (2018). Zbl 1392.53029

    Google Scholar 

  20. Otsuki, T.: On a differential equation related with differential geometry. Mem. Fac. Sci., Kyushu Univ. Ser. A 47(2), 245–281 (1993). Zbl 0802.34047

    Google Scholar 

  21. Petersen, P.: Riemannian Geometry, Graduate Texts in Mathematics, vol. 171, 3rd edn. Springer, Cham (2016). Zbl 06520113

    Google Scholar 

  22. Rogers, C. , Schief, W.K.: Bäcklund and Darboux transformations. Geometry and Modern Applications in Soliton Theory. Cambridge Texts in Applied Mathematics, Cambridge University Press (2002). Zbl 1019.53002

    Google Scholar 

  23. Sharpe, R.W.: Differential geometry: Cartan’s generalization of Klein’s Erlangen Program. Graduate Texts in Mathematics, vol. 166. Springer, Berlin (1997). Zbl 0876.53001

    Google Scholar 

  24. Shima, H.: The Geometry of Hessian Structures. World Scientific, Hackensack, NJ (2007). Zbl 1244.53004

    Google Scholar 

  25. Szabo, R.J.: Equivariant Cohomology and Localization of Path Integrals. Springer, Berlin (2000). Zbl 0998.81520

    Google Scholar 

  26. Terras, A.: Harmonic Analysis on Symmetric Spaces-Euclidean Space, the Sphere, and the Poincaré Upper Half Plane. 2nd updated edn. Springer, New York (2013). Zbl 1279.43001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Crasmareanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crasmareanu, M. (2021). The Hopf-Levi-Civita Data of Two-Dimensional Metrics. In: Hošková-Mayerová, Š., Flaut, C., Maturo, F. (eds) Algorithms as a Basis of Modern Applied Mathematics. Studies in Fuzziness and Soft Computing, vol 404. Springer, Cham. https://doi.org/10.1007/978-3-030-61334-1_4

Download citation

Publish with us

Policies and ethics