Skip to main content

Advertisement

Log in

Entropy generation minimisation: Nonlinear mixed convective flow of Sisko nanofluid

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Two-dimensional magneto-Sisko nanofluid flow bounded by nonlinearly stretching sheet is studied. Thermophoretic diffusion and Brownian motion effects are also scrutinised. Additionally, impacts of activation energy, chemical reaction and nonlinear convection are considered. The purpose of this study is to analyse entropy generation in the Sisko fluid model. Suitable transformations are used to reduce the governing equation of motion, concentration and temperature. Effects of some pertinent variables on skin friction coefficient, temperature, velocity, concentration and Nusselt number are graphically presented. Clearly, for larger Brownian and thermophoresis parameters, the temperature increases while concentration distribution decreases with Brownian parameter. Bejan number is maximum away from the sheet in the case of shear thickening fluids while it approaches zero for shear thinning fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. A W Sisko, Ind. Eng. Chem. Res. 50, 1789 (1958)

    Google Scholar 

  2. A W Sisko, J. Colloid Sci. 15, 89 (1960)

    Google Scholar 

  3. T Hayat, S Qayyum, M Imtiaz and A Alsaedi, PLoS ONE 11(2), e0148662 (2016)

    Google Scholar 

  4. R Malik and M Khan, Result Phys. 8, 64 (2018)

    ADS  Google Scholar 

  5. M M Bhatti, A Zeeshan and R Ellahi, Comput. Biol. Med.78, 29 (2016)

    Google Scholar 

  6. M I Khan, T Hayat, M I Khan and A Alsaedi, Int. Commun. Heat Mass Transf. 91, 216 (2018)

    Google Scholar 

  7. M Turkyilmazoglu, Int. J. Heat Mass Transf. 8, 150 (2014)

    Google Scholar 

  8. M Khan, S Munawar and S Abbasbandy, Int. J. Heat Mass Transf. 53, 1290 (2010)

    Google Scholar 

  9. A Tanveer, T Hayat, A Alsaedi and B Ahmad, J. Mol. Liq. 236, 290 (2017)

    Google Scholar 

  10. M I Khan, M Waqas, T Hayat and A Alsaedi, J. Colloid Interface Sci. 498, 85 (2017)

    ADS  Google Scholar 

  11. K Ayub, M Y Khan, Q M Hassan, M Ashraf and M Shakeel, Pramana – J. Phys. 91: 83 (2018)

    ADS  Google Scholar 

  12. S Choi, ASME Publ.-Fed 231, 99 (1995)

    Google Scholar 

  13. M Mustafa, T Hayat, I Pop, S Asghar and S Obaidat, Int. J. Heat Mass Transf. 54, 5588 (2011)

    Google Scholar 

  14. L Zheng, C Zhang, X Zhang and J Zhang, J. Frank. Inst. 350, 990 (2013)

    Google Scholar 

  15. M Mustafa, J A Khan, T Hayat and A Alsaedi, J. Mol. Liq. 211, 119 (2015)

    Google Scholar 

  16. Y Lin, L Zheng and X Zhang, Int. J. Heat Mass Transf. 77, 708 (2014)

    Google Scholar 

  17. B Mahanthesh, B J Gireesha, R S R Gorla, F M Abbasi and S A Shehzad, J. Magn. Magn. Mater. 417, 189 (2016)

    ADS  Google Scholar 

  18. C Yin, L Zheng, C Zhang and X Zhang, Propuls. Power Res. 6, 25 (2017)

    Google Scholar 

  19. D Kumar, J Singh and D Baleanu, Rom. Rep. Phys. 69, 103 (2017)

    Google Scholar 

  20. A K Pandey and M Kumar, Alex. Eng. J. 56, 671 (2017)

    Google Scholar 

  21. A Kumar, R Singh, G Seth and R Tripathi, Int. J. Heat Technol. 36, 1430 (2018)

    Google Scholar 

  22. A Kumar, R Singh, G Seth and R Tripathi, J. Nanofluids 7, 1 (2018)

    Google Scholar 

  23. A R Bestman, Int. J. Eng. Res. 14, 389 (1990), http://dx.doi.org/10.1002/er.4440140403

    Article  Google Scholar 

  24. O D Makinde, P O Olanrewaju and W M Charles, Afr. Mat. 22, 65 (2011)

    MathSciNet  Google Scholar 

  25. K A Malique, J. Thermodyn.2013, 692516 (2013)

    Google Scholar 

  26. Z Abbas, M Sheikh and S S Motsa, Energy 95, 12 (2016)

    Google Scholar 

  27. Z Shafique, M Mustafa and A Mushtaq, Result Phys. 6, 627 (2016)

    ADS  Google Scholar 

  28. F G Awad, S Motsa and M Khumalo, PLoS ONE 9(9), e107622 (2014)

    ADS  Google Scholar 

  29. A Bejan, J. Appl. Phys. 79, 1191 (1996)

    ADS  Google Scholar 

  30. T Hayat, S Qayyum, M I Khan and A Alsaedi, Phys. Fluid 30, 017101 (2018)

    ADS  Google Scholar 

  31. R Ellahi, M Hassan and A Zeeshan, Int. J. Heat Mass Transf. 81, 449 (2015)

    Google Scholar 

  32. A S Butt and A Ali, J. Brazil. Soc. Mech. Sci. Eng. 37(1), 211 (2015)

    Google Scholar 

  33. J Guo, M Xu, J Cai and X Huai, Energy 36, 5416 (2011)

    Google Scholar 

  34. A Noghrehabadi, M R Saffarian, R Pourrajab and M Ghalambaz, J. Mech. Sci. Technol. 27, 927 (2013)

    Google Scholar 

  35. A Zaib, S Abdelman, A J Chamkha and M M Rashidi, Heat Transf. Res.49(12), 1131 (2018), https://doi.org/10.1615/HeatTransRes.201819743

  36. K Ghasemi and M Siavashi, J. Magn. Magn. Mater. 442, 474 (2017)

    ADS  Google Scholar 

  37. O D Makinde and A S Eegunjobi, J. Porous Media 19, 799 (2016)

    Google Scholar 

  38. M I Khan, A Kumar and T Hayat, J. Mol. Liq. 278, 677 (2019)

    Google Scholar 

  39. S J Liao, Homotopy analysis method in nonlinear differential equations (Springer, Heidelberg, 2012)

    MATH  Google Scholar 

  40. M I Khan, S Qayyum, T Hayat and A Alsaedi, Chin. J. Phys. 56, 1525 (2018)

    Google Scholar 

  41. T Hayat, M I Khan, M Farooq, T Yasmeen and A Alsaedi, J. Mol. Liq. 220, 49 (2016)

    Google Scholar 

  42. M Sheikholeslami, M Hatami and D D Ganji, J. Mol. Liq. 194, 30 (2014)

    Google Scholar 

  43. T Hayat, M I Khan, M Farooq, A Alsaedi, M Waqas and T Yasmeen, Int. J. Heat Mass Transf. 99, 702 (2016)

    Google Scholar 

  44. S Qayyum, M I Khan, T Hayat and A Alsaedi, Physica B 534, 173 (2018)

    ADS  Google Scholar 

  45. J Sui, L Zheng, X Zhang and G Chen, Int. J. Heat Mass Transf. 85, 1023 (2015)

    Google Scholar 

  46. T Hayat, M I Khan, S Qayyum and A Alsaedi, Colloids Surf. A: Phys. Eng. Asp. 539, 335 (2018)

    Google Scholar 

  47. T Hayat, M I Khan, S Qayyum and A Alsaedi, Chin. J. Phys. 55, 2501 (2017)

    Google Scholar 

  48. A Kumar, R Tripathi, R Singh and G S Seth, Indian J. Phys. (2019), https://doi.org/10.1007/s12648-019-01460-4, pp. 1–14

  49. T Hayat, S Qayyum, M I Khan and A Alsaedi, Int. J. Hydrogen Energy 42, 29107 (2017)

    Google Scholar 

  50. T Hayat, M Waqas, S A Shehzad and A Alsaedi, Pramana – J. Phys. 86, 3 (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumaira Qayyum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Masood, F., Qayyum, S. et al. Entropy generation minimisation: Nonlinear mixed convective flow of Sisko nanofluid. Pramana - J Phys 93, 96 (2019). https://doi.org/10.1007/s12043-019-1838-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1838-8

Keywords

PACS Nos

Navigation