Skip to main content
Log in

Analysis with relativistic mean-field density distribution of elastic scattering cross-sections of carbon isotopes (10–14,16C) by various target nuclei

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A microscopic study of elastic scattering of carbon isotopes from different target nuclei at various incident energies is presented by using density distributions derived for 10–14,16C nuclei using relativistic mean field (RMF) theory. To obtain the real part of the optical potential, the double folding model is used. Woods–Saxon potential is used for the imaginary part. The theoretical results are discussed and compared with each other as well as with the experimental data. It is seen that the agreement between theoretical results and experimental data is very good. Also, new global equations for the imaginary potentials of the 10–14,16C nuclei are derived from the results of the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M Aygun, Eur. Phys. J. A 48, 145 (2012)

    Article  ADS  Google Scholar 

  2. M Aygun, I Boztosun and Y Sahin, Phys. At. Nucl. 75, 963 (2012)

    Article  Google Scholar 

  3. M Aygun, Ann. Nucl. Energy 51, 1 (2013)

    Article  Google Scholar 

  4. M Aygun, Commun. Theor. Phys. 60, 69 (2013)

    Article  ADS  Google Scholar 

  5. M Aygun and I Boztosun, Few-Body Syst. 55, 203 (2014)

    Article  ADS  Google Scholar 

  6. M Aygun, Pramana – J. Phys. 88: 53 (2017)

    Article  ADS  Google Scholar 

  7. A N Abdullah, Pramana – J. Phys. 89: 43 (2017)

    Article  ADS  Google Scholar 

  8. E F Aguilera et al, IOP Conf. Ser. J. Phys. Conf. Ser. 876, 012001 (2017)

    Article  Google Scholar 

  9. Y Y Yang et al, Phys. Rev. C 90, 014606 (2014)

    Article  ADS  Google Scholar 

  10. X Tang et al, Phys. Rev. C 67, 015804 (2003)

    Article  ADS  Google Scholar 

  11. R M De Vries, D A Goldberg, J W Watson, M S Zisman and J G Cramer, Phys. Rev. Lett. 39, 450 (1977)

    Article  ADS  Google Scholar 

  12. C C Sahm et al, Phys. Rev. C 34, 2165 (1986)

    Article  ADS  Google Scholar 

  13. H G Bohlen, H Ossenbrink, H Lettau and W von Oertzen, Z. Phys. A – Atoms Nucl. 320, 237 (1985)

  14. G Ingold, H G Bohlen, M Clover, H Lettau, H Ossenbrink and W von Oertzen, Z. Phys. A – Atoms Nucl. 305, 135 (1982)

  15. N Ikeda et al, Eur. Phys. J. A 7, 491 (2000)

    ADS  Google Scholar 

  16. T Yamaya et al, Phys. Rev. C 37, 2585 (1988)

    Article  ADS  Google Scholar 

  17. C Berat et al, Nucl. Phys. A 555, 455 (1993)

    Article  ADS  Google Scholar 

  18. M McCleskey et al, AIP Conf. Proc. 1213, 225 (2010)

    Article  ADS  Google Scholar 

  19. O Hansen, F Videbæk, E R Flynn, J C Peng and J A Cizewski, Nucl. Phys. A 364, 145 (1981)

    Article  ADS  Google Scholar 

  20. W Mayer et al, Phys. Rev. C 26, 500 (1982)

    Article  ADS  Google Scholar 

  21. F Videbæk, O Hansen, B S Nilsson, E R Flynn and J C Peng, Nucl. Phys. A 433, 457 (1985)

    Article  Google Scholar 

  22. A A Ogloblin et al, Phys. Rev. C 62, 044601 (2000)

    Article  ADS  Google Scholar 

  23. K Kaki, Prog. Theor. Exp. Phys. 96, 093D01 (2017)

    Google Scholar 

  24. I J Thompson, Comput. Phys. Rep. 7, 167 (1988)

    Article  ADS  Google Scholar 

  25. F Pakdel, A A Rajabi and L Nickhah, Pramana – J. Phys. 87: 90 (2016)

    Article  ADS  Google Scholar 

  26. M Aygun, Chin. J. Phys. 53, 080301 (2015)

    Google Scholar 

  27. M Aygun, Y Kucuk, I Boztosun and A A Ibraheem, Nucl. Phys. A 848, 245 (2010)

    Article  ADS  Google Scholar 

  28. G R Satchler and W G Love, Phys. Rep. 55, 183 (1979)

    Article  ADS  Google Scholar 

  29. J Cook, Comput. Phys. Commun. 25, 125 (1982)

    Article  ADS  Google Scholar 

  30. M Y M Hassan, M Y H Farag, E H Esmael and H M Maridi, Phys. Rev. C 79, 064608 (2009)

    Article  ADS  Google Scholar 

  31. S Hossain, M N A Abdullah, Md Zulfiker Rahman, A K Basak and F B Malik, Phys. Scr. 87, 015201 (2013)

    Article  ADS  Google Scholar 

  32. M El-Azab Farid and M A Hassanain, Nucl. Phys. A 678, 39 (2000)

    Article  ADS  Google Scholar 

  33. C W De Jager, H De Vries and C De Vries, At. Data Nucl. Data Tables 14, 479 (1974)

    Article  ADS  Google Scholar 

  34. W Zou, Y Tian and Z Yu Ma, Phys. Rev. C 78, 064613 (2008)

    Article  ADS  Google Scholar 

  35. G Kocak, M Karakoc, I Boztosun and A B Balantekin, Phys. Rev. C 81, 024615 (2010)

    Article  ADS  Google Scholar 

  36. S Qing-Biao, F Da-Chun and Z Yi-Zhong, Phys. Rev. C 43, 2773 (1991)

    Article  ADS  Google Scholar 

  37. H F Ehrenberg et al, Phys. Rev. 113 666 (1959)

    Article  ADS  Google Scholar 

  38. R K Gupta, D Singh and W Greiner, Phys. Rev. C 75, 024603 (2007)

    Article  ADS  Google Scholar 

  39. A Mehndiratta and P Shukla, Nucl. Phys. A 961, 22 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The author thanks the referee for valuable discussion and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Aygun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aygun, M. Analysis with relativistic mean-field density distribution of elastic scattering cross-sections of carbon isotopes (10–14,16C) by various target nuclei. Pramana - J Phys 93, 72 (2019). https://doi.org/10.1007/s12043-019-1835-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1835-y

Keywords

PACS Nos

Navigation