Skip to main content
Log in

Quasielastic scattering of 17C from a carbon target at 40 MeV/nucleon

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The quasielastic scattering angular distribution of 17C from a carbon target at 40MeV/nucleon was measured using the inverse kinematics method. The analysis of the experimental data was started using the optical model. The data were reproduced very well and the optical potential in the Woods-Saxon form was obtained. Within the framework of the coupled-channel method, the contribution from the inelastic channels to the experimental data is found significant at large angles. A systematic analysis of the elastic/quasielastic scattering of 11-13,17C + 12C was performed as well. The present work indicates that 17C is a normal nucleus whose radius is not anomalously large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)

    Article  ADS  Google Scholar 

  2. P.G. Hansen, B. Johnson, Europhys. Lett. 4, 409 (1987)

    Article  ADS  Google Scholar 

  3. A. Ozawa, T. Suzuki, I. Tanihata, Nucl. Phys. A 693, 32 (2001)

    Article  ADS  Google Scholar 

  4. W. Horiuchi, Y. Suzuki, Phys. Rev. C 74, 034311 (2006)

    Article  ADS  Google Scholar 

  5. K. Tanaka et al., Phys. Rev. Lett. 104, 062701 (2010)

    Article  ADS  Google Scholar 

  6. R. Kanungo et al., Phys. Rev. Lett. 117, 102501 (2016)

    Article  ADS  Google Scholar 

  7. Z. Elekes et al., Phys. Lett. B 614, 174 (2005)

    Article  ADS  Google Scholar 

  8. H. Sagawa et al., Phys. Rev. C 78, 041304 (2008)

    Article  ADS  Google Scholar 

  9. G.W. Fan et al., Chin. Phys. C 38, 014101 (2014)

    Article  ADS  Google Scholar 

  10. U.D. Pramanik et al., Phys. Lett. B 551, 63 (2003)

    Article  ADS  Google Scholar 

  11. C. Wu et al., J. Phys. G: Nucl. Phys. 31, 39 (2005)

    Article  ADS  Google Scholar 

  12. C. Rodriguez-Tajes et al., Eur. Phys. J. A 48, 95 (2012)

    Article  ADS  Google Scholar 

  13. D. Suzuki et al., Phys. Lett. B 666, 222 (2008)

    Article  ADS  Google Scholar 

  14. D. Smalley et al., Phys. Rev. C 92, 064314 (2015)

    Article  ADS  Google Scholar 

  15. M. Wang et al., Chin. Phys. C 41, 030003 (2017)

    Article  ADS  Google Scholar 

  16. C. Wu et al., Nucl. Phys. A 739, 3 (2004)

    Article  ADS  Google Scholar 

  17. T. Baumann et al., Phys. Lett. B 439, 256 (1998)

    Article  ADS  Google Scholar 

  18. D. Bazin et al., Phys. Rev. C 57, 2156 (1998)

    Article  ADS  Google Scholar 

  19. E. Sauvan et al., Phys. Rev. C 69, 044603 (2004)

    Article  ADS  Google Scholar 

  20. A. Ozawa et al., Nucl. Phys. A 691, 599 (2001)

    Article  ADS  Google Scholar 

  21. H.T. Fortune, Phys. Rev. C 94, 064307 (2016)

    Article  ADS  Google Scholar 

  22. N. Keeley et al., Prog. Part. Nucl. Phys. 63, 396 (2009)

    Article  ADS  Google Scholar 

  23. J.J. Kolata et al., Eur. Phys. J. A 52, 123 (2016)

    Article  ADS  Google Scholar 

  24. C.-B. Moon et al., Phys. Lett. B 297, 39 (1992)

    Article  ADS  Google Scholar 

  25. J. Raynal, CEA Saclay report CEA-N-2772 (1994)

  26. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)

    Article  ADS  Google Scholar 

  27. Z. Sun et al., Nucl. Instrum. Methods Phys. A 503, 496 (2003)

    Article  ADS  Google Scholar 

  28. M. Zahar et al., Phys. Rev. C 49, 1540 (1994)

    Article  ADS  Google Scholar 

  29. Y.L. Ye et al., Phys. Rev. C 71, 014604 (2005)

    Article  ADS  Google Scholar 

  30. J.L. Lou et al., Phys. Rev. C 83, 034612 (2011)

    Article  ADS  Google Scholar 

  31. M.E. Brandan et al., Phys. Rev. C 34, 1484 (1986)

    Article  ADS  Google Scholar 

  32. G. Igo, Phys. Rev. 115, 1665 (1959)

    Article  ADS  Google Scholar 

  33. M.E. Brandan, Phys. Rev. Lett. 60, 784 (1988)

    Article  ADS  Google Scholar 

  34. J.J. Kolata et al., Phys. Rev. Lett. 69, 2631 (1992)

    Article  ADS  Google Scholar 

  35. C.C. Sahm et al., Phys. Rev. C 34, 2165 (1986)

    Article  ADS  Google Scholar 

  36. C. Bérat et al., Nucl. Phys. A 555, 455 (1993)

    Article  ADS  Google Scholar 

  37. D.T. Khoa, G.R. Satchler, W. Von Oertzen, Phys. Lett. B 358, 14 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Shou Song.

Additional information

Communicated by A. Gade

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YS., Hu, LY., Hou, YW. et al. Quasielastic scattering of 17C from a carbon target at 40 MeV/nucleon. Eur. Phys. J. A 54, 35 (2018). https://doi.org/10.1140/epja/i2018-12460-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12460-3

Navigation