Skip to main content
Log in

Violation of space–time Bell-CHSH inequality beyond the Tsirelson bound and quantum cryptography

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Here we show that if we insert context-dependent local unitary evolutions into the spatial (i.e. normal) Bell–Clauser–Horne–Shimony–Holt (Bell-CHSH) test, then it is possible to violate the space–time Bell-CHSH inequality maximally (i.e. up to 4). The correct context dependency can be achieved via post-selection. However, this does not contradict the Tsirelson quantum bound (\(2\sqrt{2}\)), because the latter has been derived without taking into consideration the context-dependent unitary evolutions and / or post-selection. As an important application, this leads to a more efficient (in terms of resource (singlets) and classical communication) and more sensitive (to eavesdropping) quantum key distribution (QKD) protocol, compared to Ekert’s and Wigner’s QKD protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J S Bell, Speakable and unspeakable in quantum mechanics (Cambridge University Press, Cambridge, 1989)

    MATH  Google Scholar 

  2. S Popescu and D Rohrlich, Found. Phys24(3), 379 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  3. J S Bell, Physics 1, 195 (1964)

    Article  Google Scholar 

  4. J F Clauser, M A Horne, A Shimony and R A Holt, Phys. Rev. Lett23, 880 (1969)

    Article  ADS  Google Scholar 

  5. M A Nielsen and I L Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2010), Cambridge Books Online

    Book  MATH  Google Scholar 

  6. A Cabello, Phys. Rev. Lett88, 060403 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. C S Sudheer Kumar, A Biswas, A Sen(De) and U Sen, arXiv:1903.12096v1 [quant-ph] (March 2019)

  8. B S Cirel’son, Lett. Math. Phys. 4(2), 93 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  9. A S Hejamadi, A Pathak and R Srikanth, Quanta 6(1), 1 (2017)

    Article  MathSciNet  Google Scholar 

  10. M Pawłowski, Phys. Rev. A 82, 032313 (2010)

    Article  ADS  Google Scholar 

  11. E Biham, M Boyer, P O Boykin, T Mor and V Roychowdhury, J. Crypt19(4), 381 (2006)

    Article  Google Scholar 

  12. K Boström and T Felbinger, Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  13. M Lucamarini and S Mancini, Phys. Rev. Lett94, 140501 (2005)

    Article  ADS  Google Scholar 

  14. D Mayers, J. ACM 48(3), 351 (2001)

    Article  MathSciNet  Google Scholar 

  15. P W Shor and J Preskill, Phys. Rev. Lett85, 441 (2000)

    Article  ADS  Google Scholar 

  16. H K Lo and H F Chau, Science 283(5410), 2050 (1999)

    Article  ADS  Google Scholar 

  17. K Inoue and T Honjo, Phys. Rev. A 71, 042305 (2005)

    Article  ADS  Google Scholar 

  18. E Waks, H Takesue and Y Yamamoto, Phys. Rev. A 73, 012344 (2006)

    Article  ADS  Google Scholar 

  19. W O Krawec, Quant. Inf. Proc15(5), 2067 (2016)

    Article  MathSciNet  Google Scholar 

  20. V Scarani and R Renner, Phys. Rev. Lett100, 200501 (2008)

    Article  ADS  Google Scholar 

  21. T C Ralph, Phys. Rev. A 62, 062306 (2000)

    Article  ADS  Google Scholar 

  22. Z Q Yin, H W Li, W Chen, Z F Han and G C Guo, Phys. Rev. A 82, 042335 (2010)

    Article  ADS  Google Scholar 

  23. A Boaron, B Korzh, R Houlmann, G Boso, C C W Lim, A Martin and H Zbinden, J. Appl. Phys120(6), 063101 (2016)

    Article  ADS  Google Scholar 

  24. C H Bennett and G Brassard, International Conference on Computers, Systems and Signal Processing (Bangalore, India, 1984) Vol. 1, pp. 175–179

  25. T Jennewein, C Simon, G Weihs, H Weinfurter and A Zeilinger, Phys. Rev. Lett84, 4729 (2000)

    Article  ADS  Google Scholar 

  26. C H Bennett, Phys. Rev. Lett68, 3121 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  27. S Kak, Pramana – J. Phys54, 709 (2000)

    Article  ADS  Google Scholar 

  28. A K Ekert, Phys. Rev. Lett67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  29. C H Bennett, G Brassard and N D Mermin, Phys. Rev. Lett68, 557 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  30. N Gisin, G Ribordy, W Tittel and H Zbinden, Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  31. L Masanes, S Pironio and A Acin, Nat. Commun. 2, 238 (2011)

    Article  ADS  Google Scholar 

  32. J Barrett, R Colbeck and A Kent, Phys. Rev. A 86, 062326 (2012)

    Article  ADS  Google Scholar 

  33. U Vazirani and T Vidick, Phys. Rev. Lett113, 140501 (2014)

    Article  ADS  Google Scholar 

  34. H L Yin, T Y Chen, Z W Yu, H Liu, L X You, Y B Zhou, S J Chen, Y Mao, M Q Huang, W J Zhang, H Chen, M J Li, D Nolan, F Zhou, X Jiang, Z Wang, Q Zhang, X B Wang and J W Pan, Phys. Rev. Lett117, 190501 (2016)

    Article  ADS  Google Scholar 

  35. L Goldenberg and L Vaidman, Phys. Rev. Lett75, 1239 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  36. A Avella, G Brida, I P Degiovanni, M Genovese, M Gramegna and P Traina, Phys. Rev. A 82, 062309 (2010)

    Article  ADS  Google Scholar 

  37. H A Shenoy, R Srikanth and T Srinivas, Eur. Phys. Lett. 103(6), 60008 (2013)

    Article  Google Scholar 

  38. T G Noh, Phys. Rev. Lett. 103, 230501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  39. Y Sun and Q Y Wen, Phys. Rev. A 82, 052318 (2010)

    Article  ADS  Google Scholar 

  40. T C Ralph, Phys. Rev. A 61, 010303 (1999)

    Article  Google Scholar 

  41. M Hillery, Phys. Rev. A 61, 022309 (2000)

    Article  ADS  Google Scholar 

  42. F Grosshans and P Grangier, Phys. Rev. Lett. 88, 057902 (2002)

    Article  ADS  Google Scholar 

  43. M D Reid, Phys. Rev. A 62, 062308 (2000)

    Article  ADS  Google Scholar 

  44. I Derkach, V C Usenko and R Filip, Phys. Rev. A 93, 032309 (2016)

    Article  ADS  Google Scholar 

  45. R D Sharma, K Thapliyal, A Pathak, A K Pan and A De, Quantum Inf. Proc. 15(4), 1703 (2016)

    Article  ADS  Google Scholar 

  46. K Thapliyal, A Pathak and S Banerjee, Quantum Inf. Proc. 16(5), 115 (2017)

    Article  ADS  Google Scholar 

  47. S Pal, S Moitra, V S Anjusha, A Kumar and T S Mahesh, Pramana – J. Phys92: 1 (2019)

    Article  Google Scholar 

  48. M Genovese, G Brida, C Novero and E Predazziy, Pramana – J. Phys56, 153 (2001)

    Article  ADS  Google Scholar 

  49. B Hensen, H Bernien, A E Dréau, A Reiserer, N Kalb, M S Blok, J Ruitenberg, R F L Vermeulen, R N Schouten, C Abellán, W Amaya, V Pruneri, M W Mitchell, M Markham, D J Twitchen, D Elkouss, S Wehner, T H Taminiau and R Hanson, Nature 526(7575), 682 (2015)

    Article  ADS  Google Scholar 

  50. A Peres, J. Phys. A 24(4), L175 (1991)

    Article  ADS  Google Scholar 

  51. S Kochen and E P Specker, J. Math. Mech. 17, 59 (1967)

    MathSciNet  Google Scholar 

  52. N D Mermin, Phys. Rev. Lett. 65, 3373 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  53. A Einstein, B Podolsky and N Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  54. A Grudka, K Horodecki, M Horodecki, P Horodecki, R Horodecki, P Joshi, W Kłobus and A Wójcik, Phys. Rev. Lett. 112, 120401 (2014)

    Article  ADS  Google Scholar 

  55. E G Cavalcanti, Phys. Rev. X 8, 021018 (2018)

    Google Scholar 

  56. G Lüders, Ann. Phys. 15(9), 663 (2006)

    Article  Google Scholar 

  57. C Budroni and C Emary, Phys. Rev. Lett. 113, 050401 (2014)

    Article  ADS  Google Scholar 

  58. M T Quintino, T Vértesi, D Cavalcanti, R Augusiak, M Demianowicz, A Acín and N Brunner, Phys. Rev. A 92, 032107 (2015)

    Article  ADS  Google Scholar 

  59. M M Taddei, R V Nery and L Aolita, Phys. Rev. A 94, 032106 (2016)

    Article  ADS  Google Scholar 

  60. H M Wiseman, S J Jones and A C Doherty, Phys. Rev. Lett. 98, 140402 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  61. R Gallego and L Aolita, Phys. Rev. X 5, 041008 (2015)

    Google Scholar 

  62. I Gerhardt, Q Liu, A Lamas-Linares, J Skaar, V Scarani, V Makarov and C Kurtsiefer, Phys. Rev. Lett107, 170404 (2011)

    Article  ADS  Google Scholar 

  63. E Pomarico, B Sanguinetti, P Sekatski, H Zbinden and N Gisin, New J. Phys. 13(6), 063031 (2011)

    Article  ADS  Google Scholar 

  64. W J Chu, X L Zong, M Yang, G Z Pan and Z L Cao, Sci. Rep. 6, 28351 (2016)

    Article  ADS  Google Scholar 

  65. C Branciard, Phys. Rev. A 83, 032123 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the useful discussions with Prof. T S Mahesh, Prof. R Srikanth, S Aravinda, Deepak Khurana, V S Anjusha and Soham Pal. Finally, he would like to thank anonymous referees for suggesting to quantify the amount of CC involved in various QKD protocols and for pointing out the fact that violation beyond Tsirelson bound is not due to any kind of possible loop holes in performing the Bell test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C S Sudheer Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudheer Kumar, C.S. Violation of space–time Bell-CHSH inequality beyond the Tsirelson bound and quantum cryptography. Pramana - J Phys 93, 67 (2019). https://doi.org/10.1007/s12043-019-1830-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1830-3

Keywords

PACS Nos

Navigation