Skip to main content
Log in

An efficient technique for a fractional-order system of equations describing the unsteady flow of a polytropic gas

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the present investigation, the q-homotopy analysis transform method (q-HATM) is applied to find approximated analytical solution for the system of fractional differential equations describing the unsteady flow of a polytropic gas. Numerical simulation has been conducted to prove that the proposed technique is reliable and accurate, and the outcomes are revealed using plots and tables. The comparison between the obtained solutions and the exact solutions shows that the proposed method is efficient and effective in solving nonlinear complex problems. Moreover, the proposed algorithm controls and manipulates the obtained series solution in a huge acceptable region in an extreme manner and it provides us a simple procedure to control and adjust the convergence region of the series solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A Singh, S Das, S H Ong and H Jafari, J. Comput. Nonlinear Dyn. 14(4), 041003 (2019)

    Article  Google Scholar 

  2. M Badr, A Yazdani and H Jafari, Numer. Methods Partial Differ. Equ. 34, 1459 (2018)

    Article  Google Scholar 

  3. D G Prakasha, P Veeresha and H M Baskonus, Fractal Fract. 3(1), (2019), https://doi.org/10.3390/fractalfract3010009

    Article  Google Scholar 

  4. S S Roshan, H Jafari and D Baleanu, Math. Methods Appl. Sci. 41, 9134 (2018)

    Article  MathSciNet  Google Scholar 

  5. R W Ibrahim, H Jafari, H A Jalab and S B Hadid, Adv. Differ. Equ. (2019), https://doi.org/10.1186/s13662-019-2033-4

  6. P Veeresha, D G Prakasha and D Baleanu, Mathematics 7(3), (2019), https://doi.org/10.3390/math7030265

    Article  Google Scholar 

  7. M A Firoozjaee, H Jafari, A Lia and D Baleanu, J. Comput. Appl. Math. 339, 367 (2018)

    Article  MathSciNet  Google Scholar 

  8. H Jafari and S Seifi, Commun. Nonlinear Sci. 14, 2006 (2009)

    Article  Google Scholar 

  9. A Prakash, P Veeresha, D G Prakasha and M Goyal, Pramana – J. Phys. 93: 6 (2019), https://doi.org/10.1007/s12043-019-1763-x

  10. T A Sulaiman, H M Baskonus and H Bulut, Pramana – J. Phys. 91: 58 (2018), https://doi.org/10.1007/s12043-018-1635-9

  11. M Caputo, Elasticita Dissipazione (Zanichelli, Bologna, 1969)

    Google Scholar 

  12. K S Miller and B Ross, An introduction to fractional calculus and fractional differential equations (A Wiley, New York, 1993)

    MATH  Google Scholar 

  13. I Podlubny, Fractional differential equations (Academic Press, New York, 1999)

    MATH  Google Scholar 

  14. A A Kilbas, H M Srivastava and J J Trujillo, Theory and applications of fractional differential equations (Elsevier, Amsterdam, 2006)

    MATH  Google Scholar 

  15. C S Drapaca and S Sivaloganathan, J. Elast. 107, 105 (2012)

    Article  Google Scholar 

  16. H Nasrolahpour, Commun. Nonlinear Sci. 18, 2589 (2013)

    Article  MathSciNet  Google Scholar 

  17. A Deshpande and V D Gejji, Pramana – J. Phys. 87: 49 (2016), https://doi.org/10.1007/s12043-016-1231-9

  18. H Bulut, T A Sulaiman and H M Baskonus, Optik 163, 49 (2018)

    Article  ADS  Google Scholar 

  19. V K Shchigolev, Commun. Theor. Phys. 56(2), 389 (2011)

    Article  Google Scholar 

  20. D G Prakasha, P Veeresha and H M Baskonus, Comp. Math. Methods 2(1), (2019), https://doi.org/10.1002/cmm4.1021

    Article  Google Scholar 

  21. P Veeresha, D G Prakasha and H M Baskonus, Chaos 29, 013119 (2019), https://doi.org/10.1063/1.5074099

    Article  ADS  MathSciNet  Google Scholar 

  22. A Atangana, Chaos Solitons Fractals 114, 347 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. D G Prakasha, P Veeresha and M S Rawashdeh, Math. Methods Appl. Sci. (2019), https://doi.org/10.1002/mma.5533

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. J C Dalsgard, Lecture notes on stellar structure and evolution (Aarhus University Press, Aarhus, 2004)

    Google Scholar 

  25. I Klebanov, A Panov, S Ivanov and O Maslova, Commun. Nonlinear Sci. 59, 437 (2018)

    Article  Google Scholar 

  26. H Moradpour and A Abri, Int. J. Mod. Phys. D 12(1), (2016), https://doi.org/10.1142/S0218271816500140

    Article  Google Scholar 

  27. M Matinfar and S J Nodeh, J. Math. Ext. 3(2), 61 (2009)

    MathSciNet  Google Scholar 

  28. M Matinfar and M Saeidy, World Appl. Sci. J. 9(9), 980 (2010)

    Google Scholar 

  29. S J Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. thesis (Shanghai Jiao Tong University, 1992)

  30. S J Liao, Appl. Math. Mech. 19, 957 (1998)

    Article  Google Scholar 

  31. J Singh, D Kumar and R Swroop, Alexandria Eng. J. 55(2), 1753 (2016)

    Article  Google Scholar 

  32. A Prakash, P Veeresha, D G Prakasha and M Goyal, Eur. Phys. J. Plus 134(19), (2019), https://doi.org/10.1140/epjp/i2019-12411-y

    Article  Google Scholar 

  33. H M Srivastava, D Kumar and J Singh, Appl. Math. Model 45, 192 (2017)

    Article  MathSciNet  Google Scholar 

  34. J Singh, D Kumar, D Baleanu and S Rathore, Appl. Math. Comput. 335, 12 (2018)

    MathSciNet  Google Scholar 

  35. H Bulut, D Kumar, J Singh, R Swroop and H M Baskonus, Math. Nat. Sci. 2(1), 33 (2018)

    Article  Google Scholar 

  36. D Kumar, R P Agarwal and J Singh, J. Comput. Appl. Math. 399, 405 (2018)

    Article  Google Scholar 

  37. P Veeresha, D G Prakasha, N Magesh, M M Nandeppanavar and A J Christopher, arXiv:1810.06311v2 [math.NA] (2019)

  38. A Prakash, D G Prakasha and P Veeresha, Nonlinear Eng. https://doi.org/10.1515/nleng-2018-0080 (2019)

    Article  ADS  Google Scholar 

  39. P Veeresha, D G Prakasha and H M Baskonus, Math. Sci. 13, 33 (2019), https://doi.org/10.1007/s40096-019-0276-6

    Article  MathSciNet  Google Scholar 

  40. M A Mohamed, Appl. Appl. Math. 4, 52 (2009)

    MathSciNet  Google Scholar 

  41. H M Cherif, D Ziane and K Belghaba, Nonlinear Stud. 25(4), 53 (2018)

    MathSciNet  Google Scholar 

  42. A J Al-Saif and F A Al-Saadawi, J. Phys. Sci. Appl. 5, 38 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D G Prakasha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veeresha, P., Prakasha, D.G. & Baskonus, H.M. An efficient technique for a fractional-order system of equations describing the unsteady flow of a polytropic gas. Pramana - J Phys 93, 75 (2019). https://doi.org/10.1007/s12043-019-1829-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1829-9

Keywords

PACS Nos

Navigation