Skip to main content
Log in

Determination of classical behaviour of the Earth for large quantum numbers using quantum guiding equation

  • Published:
Pramana Aims and scope Submit manuscript
  • 2 Altmetric

Abstract

For quantum systems, we expect to see the classical behaviour at the limit of large quantum numbers. Hence, we apply Bohmian approach for describing the evolution of Earth around the Sun. We obtain possible trajectories of the Earth system with different initial conditions which converge to a certain stable orbit, known as the Kepler orbit, after a given time. The trajectories are resulted from the guiding equation \(p=\nabla S\) in the Bohmian mechanics, which relates the momentum of the system to the phase part of the wave function. Except at some special situations, Bohmian trajectories are not Newtonian in character. We show that the classic behaviour of the Earth can be interpreted as the consequence of the guiding equation at the limit of large quantum numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D Keeports, Eur. J. Phys. 33, 1587 (2012)

    Article  Google Scholar 

  2. D Dürr, S Goldstein and N Zanghi, J. Stat. Phys. 67, 843 (1992)

    Article  ADS  Google Scholar 

  3. P Holland, The quantum theory of motion: An account of the de Broglie–Bohm casual interpretation of quantum mechanics (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  4. F Rahmani, M Golshani and M Sarbishei, Pramana – J. Phys. 86(4), 747 (2016)

    Article  ADS  Google Scholar 

  5. F Rahmani, M Golshani and M Sarbishei, Pramana – J. Phys. 87(2): 23 (2016)

    Article  ADS  Google Scholar 

  6. J Y Koupaei and M Golshani, J. Math. Phys. 54(12), 122107 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. A Tilbi, T Boudjedaa and M Merad, Pramana – J. Phys. 87(5): 66 (2016)

    Article  ADS  Google Scholar 

  8. D Dürr and S Teufel, Bohmian mechanics: The physics and mathematics of quantum theory (Springer, Berlin, Heidelberg, 2009)

    MATH  Google Scholar 

  9. E Flöthmann and K H Welge, Phys. Rev. A 54, 1884 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. M C Gutzwiller, Chaos in classical and quantum mechanics (Springer, Berlin, Heidelberg, 1990)

    Book  Google Scholar 

  11. J Laskar, P Robutel, F Joutel, M Gastineau, A C M Correia and B Levrard, Astron. Astrophys. 428, 261 (2004)

    Article  ADS  Google Scholar 

  12. E Battista and G Esposito, Phys. Rev. D 89, 084030 (2014)

    Article  ADS  Google Scholar 

  13. M C Gutzwiller, Rev. Mod. Phys.  70, 589 (1998)

    Article  ADS  Google Scholar 

  14. M J Holman and N W Murray, Astron. J. 112, 1278 (1996)

    Article  ADS  Google Scholar 

  15. H A Bethe and E E Salpeter, Quantum mechanics of one- and two-electron atoms (Springer Verlag, Berlin, New York, 1957)

    Book  Google Scholar 

  16. E Nielsen, D V Federov, A S Jensen and E Garrido, Phys. Rep. 347, 373 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  17. J Carlson and R Schiavilla, Rev. Mod. Phys. 70 743 (1998)

    Article  ADS  Google Scholar 

  18. G Tanner, K Richter and J M Rost, Rev. Mod. Phys. 72, 497 (2000)

    Article  ADS  Google Scholar 

  19. A S Jensen, A Cobis, D V Fedorov, E Garrido and E Nielsen, Few-Body Syst. 10, (Suppl.) 19 (1999)

    Article  Google Scholar 

  20. B Jonson and K Riisager, Philos. Trans. R. Soc. Lond. A 356, 2063 (1998)

    Article  ADS  Google Scholar 

  21. J M Randazzo, F Buezas, A L Frapiccini, F D Colavecchia and G Gasaneo, Phys. Rev. A 84, 052715 (2011)

    Article  ADS  Google Scholar 

  22. F Robicheaux, Phys. Rev. A 60, 1706 (1999)

    Article  ADS  Google Scholar 

  23. G Chen, Z Ding, A Perronnet and Z Zhang, J. Math. Phys. 49, 062102 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. A Yahalom, J Levitan, M Lewkowicz and L Horwitz, Phys. Lett. A 375, 2111 (2011)

    Article  ADS  Google Scholar 

  25. X Cui, Few-Body Syst. 52, 65 (2012)

    Article  ADS  Google Scholar 

  26. R Castelli, Commun. Nonlinear Sci. 17, 804 (2012)

    Article  Google Scholar 

  27. H W Hamber and S Liu, Phys. Lett. B 357, 51 (1995)

    Article  ADS  Google Scholar 

  28. S Naoz, B Kocsis, A Loeb and N Yunes, Astrophys. J. 773(2), 187 (2013)

    Article  ADS  Google Scholar 

  29. J Hartung and J Steinhoff, Ann. Phys. 523, 783 (2011)

    Article  Google Scholar 

  30. T Damour, P Jaranowski and G Schäfer, Phys. Rev. D 62, 021501 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  31. J S Townsend, A modern approach to quantum mechanics (University Science Books, CA, USA, 2000)

    Google Scholar 

  32. D Bohm, Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  33. D Bohm and B J Hiley, The undivided universe: An ontological interpretation of quantum theory (Routledge, UK, 2006)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M Koorepaz Mahmoodabadi for his assistance and useful comments on the nonlinear equations with closed cycles which improved their ideas on the subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Shafiee.

Appendix A

Appendix A

The differential equation (18) can be solved in any time domain in which \(\xi \) is considered as a constant. One can write this equation as

$$\begin{aligned} \frac{\mathrm{d}r}{\mathrm{d}t}=\xi \sin \theta \sqrt{\frac{2\mu }{r(t)}-\frac{\mu }{a}}, \end{aligned}$$
(A.1)

where both \(\theta \) and r are time-dependent, but have no dependency on each other. For \(\theta \) we have from (9)

$$\begin{aligned} \sin \theta =\sqrt{1-\frac{Z_h^2}{r^2(t)}}. \end{aligned}$$
(A.2)

During the Earth’s rotation around the Sun, the time variations of r are insignificant. With regard to (A.2) and noticing that the constant \(Z_h\) has the same order of magnitude as r, one can neglect the time dependency of \(\theta \) too. Therefore, to solve eq. (A.1), we can consider the term \(\xi \sin \theta \) as a constant.

Define the variable q as

$$\begin{aligned} q=r-r_\mathrm{eq}, \end{aligned}$$
(A.3)

where \(r_\mathrm{eq}\) represents the equilibrium distance, and eq. (A.1) yields

$$\begin{aligned} \frac{\mathrm{d}q}{\mathrm{d}t}=\xi \sin \theta \sqrt{\frac{2\mu }{r_\mathrm{eq}(\frac{q}{r_\mathrm{eq}}+1)}-\frac{\mu }{a}}. \end{aligned}$$
(A.4)

Hence, the variable q represents the deviation of r from the equilibrium distance \(r_\mathrm{eq}\simeq a\). The term \(q/r_\mathrm{eq}\) is small, so that one can expand \((1+q/r_\mathrm{eq})^{-1}\) to obtain

$$\begin{aligned} \frac{\mathrm{d}q}{\mathrm{d}t}=\xi \sin \theta \sqrt{\frac{\mu }{r_\mathrm{eq}}\left( 2-\frac{q}{r_\mathrm{eq}}\right) -\frac{\mu }{a}}. \end{aligned}$$
(A.5)

By expanding the radical term, one finally gets

$$\begin{aligned} \frac{\mathrm{d}q}{\mathrm{d}t}=\xi \sin \theta \left[ B-\frac{\mu }{2Br_\mathrm{eq}^2}q-\frac{\mu ^2}{8B^3r_\mathrm{eq}^4}q^2\right] , \end{aligned}$$
(A.6)

where B is already defined in eq. (22). Equation (A.6) is a linear differential equation which can be solved easily. Consequently, eq. (20) is obtained as an answer from (A.6), followed by relations (21) and (22) as definitions in (20).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanmanesh, A., Shafiee, A. Determination of classical behaviour of the Earth for large quantum numbers using quantum guiding equation. Pramana - J Phys 93, 52 (2019). https://doi.org/10.1007/s12043-019-1820-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1820-5

Keywords

PACS Nos

Navigation