Skip to main content
Log in

Solitons in conformable time-fractional Wu–Zhang system arising in coastal design

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The modified exp\(\left( {-\Omega \left( \zeta \right) } \right) \)-expansion function method is applied to the Wu–Zhang system with conformable time-fractional derivative to construct new analytical solutions. We have obtained some soliton-type solutions such as dark, singular and combined soliton solutions. We have seen that all solutions have provided the mentioned equation system. For the suitable value of the solutions, the 2D–3D and contour surfaces have been plotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D Kaya, S Gülbahar, A Yokuş and M Gülbahar, Adv. Differ. Equ.  1, 77 (2018)

    Article  Google Scholar 

  2. C Cattani, D Baleanu, X-J Yang, J A T Machado and M C Baleanu, Abstr. Appl. Anal.  2014, 6 (2014)

    Article  Google Scholar 

  3. M H Heydari, M R Hooshmandas, F Mohammadi and C Cattani, Commun. Nonlinear Sci. Numer. Simul.  19, 37 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  4. C Cattani, Math. Probl. Eng.  2012, 1 (2012)

    Google Scholar 

  5. A R Seadawy, Comp. Math. Appl.  70, 345 (2015)

    Article  MathSciNet  Google Scholar 

  6. H M Baskonus, T Mekkaoui, Z Hammouch and H Bulut, Entropy  17, 5771 (2015)

    Article  ADS  Google Scholar 

  7. H M Baskonus and H Bulut, Open Math.  13, 547 (2015)

    Article  MathSciNet  Google Scholar 

  8. H M Baskonus, Z Hammouch, T Mekkaoui and H Bulut, AIP Conf. Proc.  1738, 290005 (2016)

    Article  Google Scholar 

  9. C Ravichandran, K Jothimani, H M Baskonus and N Valliammal, Eur. Phys. J. Plus  133, 109 (2018)

    Article  Google Scholar 

  10. M A Dokuyucu, E Celik, H Bulut and H M Baskonus, Eur. Phys. J. Plus  133, 92 (2018)

    Article  Google Scholar 

  11. A Esen, T A Sulaiman, H Bulut and H M Baskonus, Optik  167, 150 (2018)

    Article  ADS  Google Scholar 

  12. T A Sulaiman, H M Baskonus and H Bulut, Pramana – J. Phys.  91: 1 (2018)

    Article  Google Scholar 

  13. R Subashini, C Ravichandran, K Jothimani and H M Baskonus, Discrete Contin. Dyn. Syst. S (2018) (accepted), https://doi.org/10.3934/dcdss.2020053

    Article  Google Scholar 

  14. R Khalila, M Al Horania, A Yousefa and M Sababheh, J. Comput. Appl. Math.  264, 65 (2014)

    Article  MathSciNet  Google Scholar 

  15. M Eslami and H Rezazadeh, Calcolo  53, 475 (2015)

    Article  Google Scholar 

  16. T Y Wu and J E Zhang, On modeling nonlinear long wave, in: Mathematics is for solving problems edited by L P Cook, V Roytbhurd and M Tulin (SIAM, Philadelphia, 1996) p. 233

  17. X Zheng, Y Chen and H Zhang, Phys. Lett. A  311, 145 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  18. J M Domínguez, C Altomare, J Gonzalez-Cao and P Lomonaco, Coast. Eng. J. 61(1), 15 (2019)

    Article  Google Scholar 

  19. P Lomonaco, D Istrati, T Maddux, I Buckle, S Yim and T Xiang, Proceedings of the 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) (Ottawa, Canada, 10–13 May 2016)

  20. P Lin, Coast. Eng.  51, 35 (2004)

    Article  Google Scholar 

  21. A C Scott, Encyclopedia of nonlinear science edited by A Scott (Taylor & Francis, New York, 2005)

    MATH  Google Scholar 

  22. M Mirzazadeh, M Ekici, M Eslami, E V Krishnan, S Kumar and A Biswas, Nonlinear Anal. Model.  22, 441 (2017)

    Article  Google Scholar 

  23. H Triki, T Hayat, O M Aldossary and A Biswas, Hacet. J. Math. Stat.  41, 537 (2012)

    MathSciNet  Google Scholar 

  24. Z Du, B Tian, X Y Xie, J Chai and X Y Wu, Pramana – J. Phys.  90: 45 (2018)

    Article  ADS  Google Scholar 

  25. Y S Li, W X Ma and J E Zhang, Phys. Lett. A  275, 60 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  26. Y S Li and J E Zhang, Phys. Lett. A  284, 253 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  27. V B Matveev and M A Salle, Darboux transformation and soliton (Springer-Verlag, Berlin, 1991) Vol. 8, p. 120

    Book  Google Scholar 

  28. H Q Sun and A H Chen, Arab. J. Basic Appl. Sci.  25, 85 (2018)

    Article  Google Scholar 

  29. X Y Tang and S Y Lou, J. Math. Phys.  44, 4000 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  30. C Chen and S Lou, Chaos Solitons Fractals  16, 27 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  31. A Atangana, D Baleanu and A Alsaedi, Open Math.  13, 889 (2015)

    Article  MathSciNet  Google Scholar 

  32. M G Hafez, M N Alam and M A Akbar, World Appl. Sci. J.  32, 2150 (2014)

    Google Scholar 

  33. H O Roshid and M A Rahman, Results Phys.  4, 150 (2014)

    Article  Google Scholar 

  34. F Özpinar, H M Baskonus and H Bulut, Entropy  17, 8267 (2015)

    Article  ADS  Google Scholar 

  35. E W Weisstein, The CRC concise encyclopedia of mathematics (CRC Press, 2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulnur Yel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yel, G., Baskonus, H.M. Solitons in conformable time-fractional Wu–Zhang system arising in coastal design. Pramana - J Phys 93, 57 (2019). https://doi.org/10.1007/s12043-019-1818-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1818-z

Keywords

PACS Nos

Navigation