Skip to main content
Log in

Enhancement in heat and mass transfer over a permeable sheet with Newtonian heating effects on nanofluid: Multiple solutions using spectral method and stability analysis

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper investigates the Newtonian heating effect on nanofluid flow over a nonlinear permeable stretching / shrinking sheet near the region of stagnation point. Only two important mechanisms on the transportation of nanoparticles in base fluid are discussed: the Brownian motion and thermophoresis. This physical problem is modelled using the Buongiorno (ASME J. Heat Transfer 128, 240 (2006) model in terms of nonlinear governing partial differential equations and transformed into dimensionless ordinary differential equations by using similarity transformation and the solution is calculated using the numerical scheme known as the Chebyshev spectral collocation method. The main interest of this study is the region of the boundary layer where viscous effects are dominant. Dual solutions are reported against the shrinking parameter in which the first solution is stable due to positive eigenvalues and the second is unstable due to negative eigenvalues and ranges of these solutions are effected by the suction parameter which is discussed using graphs and tables. The effects of dimensionless parameters, namely, velocity ratio, suction, Schmidt number, Prandtl number, thermophoresis and Brownian motion on temperature and concentration profiles, skin friction coefficient and Nusselt number are also shown using graphs. For the validity of the applied scheme, a comparison is established with published studies in the limiting case. Through the results, it is concluded that temperature and concentration increase by increasing the values of the thermophoresis parameter and the opposite behaviour is observed in the case of Brownian motion and Schmidt number. Skin friction coefficient, Nusselt and Sherwood numbers increase on increasing the suction parameter. Also, an enhancement in temperature and concentration profiles is observed in the presence of Newtonian heating parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S U S Choi, ASME Int. Mech. Eng. 66, 99 (1995)

    Google Scholar 

  2. J Buongiorno, ASME J. Heat Transfer. 128, 240 (2006)

    Article  Google Scholar 

  3. D A Nield and A V Kuznetsov, Int. J. Heat Mass Transf. 52, 5792 (2009)

    Article  Google Scholar 

  4. W Daungthongsuk and S Wongwises, Renew. Sust. Eng. Rev. 11, 797 (2007)

    Article  Google Scholar 

  5. X Q Wang and A S Mujumdar, Braz. J. Chem. Eng. 25, 613 (2008)

    Article  Google Scholar 

  6. X Q Wang and A S Mujumdar, Braz. J. Chem. Eng. 25, 631 (2008)

    Article  Google Scholar 

  7. M Mustafa, T Hayat, I Pop, S Asghar and S Obaidat, Int. J. Heat Mass Transf. 54, 5588 (2011)

    Article  Google Scholar 

  8. P K Kameswaran, P Sibanda, C Ram Reddy and P V S N Murthy, Bound. Value Probl. 1, 188 (2013)

    Article  Google Scholar 

  9. N Bachok, A Ishak and I Pop, Nanoscale Res. Lett. 6, 623 (2011)

    Article  ADS  Google Scholar 

  10. S Mansur, A Ishak and I Pop, Proc. Inst. Mech. Eng. E: J. Mech. Eng. 231, 172 (2015)

    Article  Google Scholar 

  11. D Pal, G Mandal and K Vajravalu, Commun. Numer. Anal. 1, 30 (2015)

    Article  Google Scholar 

  12. Z Abbas, M Sheikh and I Pop, J. Taiwan Inst. Chem. Eng. 55, 69 (2015)

    Article  Google Scholar 

  13. D Pal and G Mandal, J. Pet. Sci. Eng. 126, 16 (2015)

    Article  Google Scholar 

  14. S Naramgari and C Sulochana, Alexandria Eng. J. 55, 819 (2016)

    Article  Google Scholar 

  15. I Mustafa, T Javed and A Ghaffari, J. Mol. Liq. 219, 526 (2016)

    Article  Google Scholar 

  16. S K Nandy and I Pop, Int. Commun. Heat Mass Transf. 53, 50 (2014)

    Article  Google Scholar 

  17. F M Hady, F S Ibrahim, S M Abdel-Gaied and M R Eid, Nanoscale Res. Lett. 7, 229 (2012)

    Article  ADS  Google Scholar 

  18. P Rana and R Bhargava, Commun. Nonlinear Sci. Numer. Simul. 17, 212 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. K Zaimi, A Ishak and I Pop, Sci. Rep. 4, 4404 (2014)

    Article  ADS  Google Scholar 

  20. N Bachok, A Ishak and I Pop, Int. J. Heat Mass Transf. 55, 8122 (2012)

    Article  Google Scholar 

  21. A Malvandi, F Hedayati and G Domairry, J. Thermodyn. 2013, Article ID 764827 (2013)

  22. I Anwar, S Shafie and M Z Salleh, Walailak J. Sci. Tech. 11, 569 (2014)

    Google Scholar 

  23. F Mabood, W A Khan and A M Ismail, J. Magn. Magn. Mater. 374, 569 (2015)

    Article  ADS  Google Scholar 

  24. D Pal and G Mandal, Powder Technol. 279, 61 (2015)

    Article  Google Scholar 

  25. J A Khan, M Mustafa, T Hayat and A Alsaedi, Int. J. Heat Mass Transf. 86, 158 (2015)

    Article  Google Scholar 

  26. N C Peddisetty, Pramana – J. Phys. 87(4): 62 (2016)

    Article  ADS  Google Scholar 

  27. A A Afify and M A El-Aziz, Pramana – J. Phys. 88(2): 31 (2017)

    Article  ADS  Google Scholar 

  28. T Hayat, M Waqas, S A Shehzad and A Alsaedi, Pramana – J. Phys. 86(1), 3 (2016)

    Article  ADS  Google Scholar 

  29. Y S Daniel, Z A Aziz, Z Ismail and F Salah, Aust. J. Mech. Eng. 16, 213 (2018)

    Google Scholar 

  30. M Z Salleh, R Nazar and I Pop, Chem. Eng. Commun. 196, 987 (2009)

    Article  Google Scholar 

  31. J H Merkin, R Nazar and I Pop, J. Eng. Math. 74, 53 (2012)

    Article  Google Scholar 

  32. M Z Salleh, R Nazar and I Pop, J. Taiwan Inst. Chem. Eng. 41, 651 (2010)

    Article  Google Scholar 

  33. M K A Mohamed, M Z Salleh, R Nazar and A Ishak, Sains Malays. 41, 1467 (2012)

    Google Scholar 

  34. N Bachok, A Ishak and I Pop, J. Franklin Inst. 350, 2736 (2013)

    Article  MathSciNet  Google Scholar 

  35. O D Makinde and A Aziz, Int. J. Therm. Sci. 50, 1326 (2011)

    Article  Google Scholar 

  36. N A Yacob, A Ishak, I Pop and K Vajravelu, Nanoscale Res. Lett. 6, Article ID 314 (2011)

  37. M Mustafa, M Nawaz, T Hayat and A Alsaedi, J. Aerosp. Eng. 27, 04014006 (2014)

    Article  Google Scholar 

  38. O D Makinde, W A Khan and Z H Khan, Int. J. Heat Mass Transf. 62, 526 (2013)

    Article  Google Scholar 

  39. M M Rahman and I A Eltayeb, Meccanica 48, 601 (2013)

    Article  MathSciNet  Google Scholar 

  40. W Ibrahim and O D Makinde, J. Aerosp. Eng. 29, 04015037-11 (2016)

    Article  Google Scholar 

  41. F Mabood, N Pochai and S Shateyi, J. Eng. 11, Article ID 5874864 (2016)

  42. M H Khan Hashim and A S Alshomrani, PLoS One 11, e0157180 (2016)

    Article  Google Scholar 

  43. K Y Bing, A Hussanan, M K A Mohamed, N M Sarif, Z Ismail and M Z Salleh, AIP Conf. Proc. 1830, 020022 (2017)

    Article  Google Scholar 

  44. P D Weidman, D G Kubitschek and A M J Davis, Int. J. Eng. Sci. 44, 730 (2006)

    Article  Google Scholar 

  45. N Najib, N Bachok, N Md Arifin and F Md Ali, Appl. Sci. 8, 642 (2018)

    Article  Google Scholar 

  46. A V Rosca and I Pop, Int. J. Heat Mass Transf. 60, 355 (2012)

    Article  Google Scholar 

  47. A Postelnicu and I Pop, Appl. Math. Comput. 217, 4359 (2011)

    MathSciNet  Google Scholar 

  48. I S Awaludin, P D Weidman and A Ishak, AIP Adv. 6, 045308 (2016)

    Article  ADS  Google Scholar 

  49. N S Ismail, N M Arifin, N Bachok and N Mahiddin, AIP Conf. Proc. 1739, 020023 (2016)

    Article  Google Scholar 

  50. N F Fauzi, S Ahmad and I Pop, Alexandria Eng. J. 54, 929 (2015)

    Article  Google Scholar 

  51. S D Harris, D B Ingham and I Pop, Trans. Porous Media 77, 267 (2009)

  52. J P Boyd, Chebyshev and Fourier spectral methods (Springer, Berlin, 2000)

    Google Scholar 

  53. C Canuto, M Y Hossaini, A Quartcroni and T A Zang, Spectral methods in fluid dynamics (Springer, Berlin, 1987)

    Google Scholar 

  54. T Javed and I Mustafa, Asia Pac. J. Chem. Eng. 10, 184 (2015)

  55. Y Jaluria, Computer methods for engineering (Allyn and Bacon Inc, Boston, 1988)

    MATH  Google Scholar 

  56. C Y Wang, Int. J. Nonlinear Mech. 43, 377 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abuzar Ghaffari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, I., Javed, T., Ghaffari, A. et al. Enhancement in heat and mass transfer over a permeable sheet with Newtonian heating effects on nanofluid: Multiple solutions using spectral method and stability analysis. Pramana - J Phys 93, 53 (2019). https://doi.org/10.1007/s12043-019-1814-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1814-3

Keywords

PACS

Navigation