Skip to main content
Log in

Coexistence of attractors in integer- and fractional-order three-dimensional autonomous systems with hyperbolic sine nonlinearity: Analysis, circuit design and combination synchronisation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper reports the results of the analytical, numerical and analogical analyses of integer- and fractional-order chaotic systems with hyperbolic sine nonlinearity (HSN). By varying a parameter, the integer order of the system displays transcritical bifurcation and new complex shapes of bistable double-scroll chaotic attractors and four-scroll chaotic attractors. The coexistence among four-scroll chaotic attractors, a pair of double-scroll chaotic attractors and a pair of point attractors is also reported for specific parameter values. Numerical results indicate that commensurate and incommensurate fractional orders of the systems display bistable double-scroll chaotic attractors, four-scroll chaotic attractors and coexisting attractors between a pair of double-scroll chaotic attractors and a pair of point attractors. Moreover, the physical existence of chaotic attractors and coexisting attractors found in the integer-order and commensurate fractional-order chaotic systems with HSN is verified using PSIM software. Numerical simulations and PSIM results have a good qualitative agreement. The results obtained in this work have not been reported previously in three-dimensional autonomous system with HSN and thus represent an enriching contribution to the understanding of the dynamics of this class of systems. Finally, combination synchronisation of such three-coupled identical commensurate fractional-order chaotic systems is analysed using the active backstepping method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. E N Lorenz, J. Atmos. Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  2. S H Strogatz, Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering (Westview Press, Massachusetts, 2014)

    MATH  Google Scholar 

  3. M Lakshmanan and D V Senthilkumar, Dynamics of nonlinear time-delay systems (Springer Science & Business Media, Heidelberg, 2011)

  4. A Buscarino, L Fortuna, M Frasca and L V Gambuzza, Int. J. Bifurc. Chaos 23, 1330015 (2013)

    Article  Google Scholar 

  5. S Jafari, S Dehghan, G Chen, S T Kingni and K Rajagopal, Chaos Solitons Fractals 112, 135 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  6. P S Shabestari, S Panahi, B Hatef, S Jafari and J C Sprott, Chaos Solitons Fractals 112, 44 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. Z Wei, A Akgul, U E Kocamaz, I Moroz and W Zhang, Chaos Solitons Fractals 112, 157 (2018)

    Article  ADS  Google Scholar 

  8. P Zhou, R Bai and J Zheng, Nonlinear Dyn. 82, 519 (2015)

    Article  Google Scholar 

  9. J Ma, Q Y Wang, W Y Jin and Y F Xia, Chin. Phys. Lett. 25, 3582 (2008)

    Article  ADS  Google Scholar 

  10. J C Sprott, Elegant chaos: Algebraically simple flow (World Scientific Publishing, Singapore, 2010)

    Book  MATH  Google Scholar 

  11. I Petras, Fractional-order nonlinear systems: Modeling, analysis and simulation (Springer, China, 2011)

    Book  MATH  Google Scholar 

  12. P Zhou and P Zhu, Nonlinear Dyn. 89, 1719 (2017)

    Article  Google Scholar 

  13. Q Yin and C Wang, Int. J. Bifurc. Chaos 28, 1850047 (2018)

    Article  Google Scholar 

  14. L Zhou, C Wang, X Zhang and W Yao, Int. J. Bifurc. Chaos 28, 1850050 (2018)

    Article  Google Scholar 

  15. X Wang, A Akgul, S Cicek, V-T Pham and D V Hoang, Int. J. Bifurc. Chaos 27, 1750130 (2017)

    Article  Google Scholar 

  16. A Kiani-B, K Fallahi, N Pariz and H Leung, Commun. Nonlinear Sci. Numer. Simul. 14, 863 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. P Muthukumar and P Balasubramaniam, Nonlinear Dyn. 74, 1169 (2013)

    Article  Google Scholar 

  18. A S Elwakil, S Özoguz and M P Kennedy, Int. J. Bifurc. Chaos 13, 3093 (2003)

    Article  Google Scholar 

  19. G Qi, G Chen, M A Wyk, B J Wyk and Y Zhang, Chaos Solitons Fractals 38, 705 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  20. Q Lai, Z H Guan, Y Wu, F Liu and D X Zhang, Int. J. Bifurc. Chaos 23, 1350152 (2013)

    Article  Google Scholar 

  21. S Yu, W K S Tang, J Lü and G Chen, Int. J. Bifurc. Chaos 20, 29 (2010)

    Article  ADS  Google Scholar 

  22. C Zhang and S Yu, Int. J. Circuit Theory Appl. 41, 221 (2013)

    Article  Google Scholar 

  23. S Yu, J Lü, G Chen and X Yu, IEEE Trans. Circuit Syst. I: Regul. Pap. 59, 1015 (2012)

    Article  Google Scholar 

  24. N Yu, Y W Wang, X K Liu and J W Xiao, Int. J. Bifurc. Chaos 28, 1850045 (2018)

    Article  Google Scholar 

  25. H Jia, Z Guo, Q Qi and Z Chen, Optik 155, 233 (2018)

    Article  ADS  Google Scholar 

  26. J H Lü and G R Chen, Int. J. Bifurc. Chaos 16, 775 (2006)

    Article  Google Scholar 

  27. A N Pisarchik and U Feudel, Phys. Rep. 540, 167 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  28. X Luo and M Small, Int. J. Bifurc. Chaos 17, 3235 (2007)

    Article  Google Scholar 

  29. C Hens, S K Dana and U Feudel, Chaos: Interdiscip. J. Nonlinear Sci. 25, 053112 (2015)

    Article  Google Scholar 

  30. B C Bao, B Xu, H Bao and M Chen, Electron. Lett. 52, 1008 (2016)

    Article  Google Scholar 

  31. B Bao, T Jiang, Q Xu, M Chen, H Wu and Y Hu, Nonlinear Dyn. 86, 1711 (2016)

    Article  Google Scholar 

  32. J Kengne, Z T Njitacke and H B Fotsin, Nonlinear Dyn. 83, 751 (2016)

    Article  Google Scholar 

  33. J Kengne, A Nguomkam Negou and Z T Njitacke, Int. J. Bifurc. Chaos 27, 1750100 (2017)

    Article  Google Scholar 

  34. A Massoudi, M G Mahjani and M Jafarian, J. Electroanal. Chem. 647, 74 (2010)

    Article  Google Scholar 

  35. Z T Njitacke, J Kengne and L Kamdjeu Kengne, Chaos Solitons Fractals 105, 77 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  36. J Kengne, A Nguomkam Negou and D Tchiotsop, Nonlinear Dyn. 88, 2589 (2017)

    Article  Google Scholar 

  37. A Nguomkam Negou, J Kengne and D Tchiotsop, Chaos Solitons Fractals 107, 275 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  38. V-T Pham, C Volos, S T Kingni, S Jafari and T Kapitaniak, Nonlinear Dyn. 87, 2001 (2017)

    Article  Google Scholar 

  39. J P Singh, K Rajagopal and B K Roy, Pramana – J. Phys. 91, 33 (2018)

    Article  ADS  Google Scholar 

  40. X Xia, Y Zeng and Z Li, Pramana – J. Phys. 91: 82 (2018)

    Google Scholar 

  41. Z Wang, C K Volos, S T Kingni, A Taher Azar and V-T Pham, Optik 131, 1071 (2017)

    Article  ADS  Google Scholar 

  42. R Caponetto, R Dongola, L Fortuna and I Petras, World Sci. Ser. Nonlinear Sci. A 72, 200 (2010)

    Google Scholar 

  43. R Hilfer, Applications of fractional calculus in physics (World Scientific, New Jersey, 2001)

    MATH  Google Scholar 

  44. K Diethelm, N J Ford and D Freed, Nonlinear Dyn. 29, 3 (2002)

    Article  Google Scholar 

  45. M S Tavazoei and M Haeri, Phys. Lett. A 367, 102 (2007)

    Article  ADS  Google Scholar 

  46. G E Carlson and C A Halijak, IEEE Trans. Circuit Theory 11, 210 (1964)

    Article  Google Scholar 

  47. S Westerlund and L Ekstam, IEEE Trans. Dielectr. Electr. Insul. 1, 826 (1994)

    Article  Google Scholar 

  48. S-P Wang, S-K Lao, H-K Chen, J-H Chen and S-Y Chen, Int. J. Bifurc. Chaos 23, 1350030 (2013)

    Article  Google Scholar 

  49. B Nana, P Woafo and S Domngang, Commun. Nonlinear Sci. Numer. Simul. 14, 2266 (2009)

    Article  ADS  Google Scholar 

  50. N Smaoui, A Karouma and M Zribi, Commun. Nonlinear Sci. Numer. Simul. 16, 3279 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  51. R Z Luo, Y L Wang and S C Deng, Chaos 21, 043114 (2011)

    Article  ADS  Google Scholar 

  52. R Z Luo and Y L Wang, Chaos 22, 023109 (2012)

    Article  MathSciNet  Google Scholar 

  53. Z Alam, L Yuan and Q Yang, J. Autom. Sin. 3, 157 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Roger Mboupda Pone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kingni, S.T., Pone, J.R.M., Kuiate, G.F. et al. Coexistence of attractors in integer- and fractional-order three-dimensional autonomous systems with hyperbolic sine nonlinearity: Analysis, circuit design and combination synchronisation. Pramana - J Phys 93, 12 (2019). https://doi.org/10.1007/s12043-019-1786-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1786-3

Keywords

PACS Nos

Navigation