Skip to main content
Log in

The Weyl equation under an external electromagnetic field in the cosmic string space–time

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper we have considered a massless spinor Dirac particle in the presence of an external electromagnetic field in the cosmic string space–time. To study the Weyl equation in the cosmic string framework using the general definition of Laplacian in the curved space, elements of covariant derivative have been constructed and the Weyl equation has been rewritten in the considered framework. Then we have obtained the equation of energy eigenvalues by using the Nikiforov–Uvarov (NU) method. The wave function has been obtained in terms of Laguerre polynomials. An important result obtained is that the degeneracy of the Minkowski space spectral is broken in the transition from Minkowski to cosmic string space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T W B Kibble, J. Phys. A 9, 183 (1976)

    Article  Google Scholar 

  2. L C N Santos and C C Barros Jr, Eur. Phys. J. C 77, 186 (2017)

    Article  ADS  Google Scholar 

  3. M M de Sousa, R F Ribeiro and E B de Mello, Phys. Rev. D 95, 4 (2017)

    Google Scholar 

  4. G D A Marques and V B Bezerra, Phys. Rev. D 66, 10 (2002)

    Article  Google Scholar 

  5. K Bakke and C Furtado, Phys. Rev. D 82, 8 (2010)

    Article  Google Scholar 

  6. A Boumali and N Messai, Can. J. Phys. 95, 10 (2017)

    Article  Google Scholar 

  7. J Carvalho, A de M Carvalho and C Furtado, Eur. Phys. J. C 74, 10.1140 (2014)

  8. G A Marques and V B Bezerra, Class. Quantum Grav. 19, 985 (2002)

    Article  ADS  Google Scholar 

  9. L Parker, Phys. Rev. Lett 44, 1559 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  10. A L Cavalcanti de Oliveira and E R Bezerra de Mello, Class. Quantum Grav. 23, 5249 (2006)

    Article  ADS  Google Scholar 

  11. L B Castro, Eur. Phys. J. C 76, 1 (2016)

    Article  Google Scholar 

  12. F M Andrade, C Filgueiras and E O Silva, Adv. High Energy Phys. 2017, 8934691 (2017)

    Article  Google Scholar 

  13. A de Pàdua Santos and E R Bezerra de Mello, Phys. Rev. D 94, 063524 (2016)

  14. A Beresnyak, Astrophys. J. 804, 121 (2015)

    Article  ADS  Google Scholar 

  15. H F Mota and K Bakke, Phys. Rev. D 89, 027702 (2014)

    Article  ADS  Google Scholar 

  16. C R Muniz, V B Bezerra and M S Cunha, Ann. Phys 350, 105 (2014)

    Article  ADS  Google Scholar 

  17. J Muñoz-Castañeda and M Bordag, Phys. Rev. D 89, 065034 (2014)

    Article  ADS  Google Scholar 

  18. H Cai, H Yu and W Zhou, Phys. Rev. D 92, 084062 (2015)

    Article  ADS  Google Scholar 

  19. H Hassanabadi and M Hosseinpour, Eur. Phys. J. C 76, 553 (2016)

    Article  ADS  Google Scholar 

  20. H Weigel, M Quandt and N Graham, Phys. Rev. D 94, 045015 (2016)

    Article  ADS  Google Scholar 

  21. K Jusufi, Eur. Phys. J. C 76, 332 (2016)

    Article  ADS  Google Scholar 

  22. J P Morais Graca, Class. Quantum Grav. 33, 055004 (2016)

  23. S V Kulkarni and L K Sharma, Class. Quantum Grav. 12, 5 (1979)

    Google Scholar 

  24. N S Gupta, Class. Quantum Grav. 60, 1 (2003)

    Google Scholar 

  25. J L López-Bonilla, J Morales and M A Rosales, Pramana – J. Phys. 43, 4 (1994)

    Google Scholar 

  26. S Biswas, Pramana – J. Phys. 36, 5 (1991)

    Google Scholar 

  27. B R Iyer and A Kumar, Pramana – J. Phys. 8, 6 (1977)

    Article  Google Scholar 

  28. A F Rañada, J. Phys. A 11, 2 (1978)

    Article  Google Scholar 

  29. Y Araki and K Nomura, Phys. Rev. B 93, 9 (2016)

    Article  Google Scholar 

  30. B Wunsch, T Stauber, F Sols and F Guinea, New J. Phys. 8, 12 (2006)

    Article  Google Scholar 

  31. A F Ratiada, J. Phys. A 11, 341 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  32. R Finkelstein, C Fronsdal and P Kaus, Phys. Rev. 103, 1571 (1956)

    Article  ADS  Google Scholar 

  33. C Tezcan and R Sever, Int. J. Theor. Phys. 48, 337 (2009)

    Article  Google Scholar 

  34. E R Bezerra de Mello, E R Figueiredo Medeiros and A A Saharian, Class. Quantum Grav. 30, 175001 (2013)

  35. L B Castro, Eur. Phys. J. C 75, 287 (2015)

    Article  ADS  Google Scholar 

  36. G Q Garcia, J R de S Oliveira and C Furtado, arXiv:1705.10631 [hep-th] (2017)

  37. H Hassanabadi, Z Derakhshani and S Zarrinkamar, Acta Phys. Pol. A 129, 3 (2016)

    Article  Google Scholar 

  38. H Hassanabadi, S S Hosseini and S Zarrinkamar, Chin. Phys. C 38, 6 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors thank the referee for a thorough reading of our manuscript and for constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Hosseini.

Appendix A. The NU method

Appendix A. The NU method

We consider the following differential equation [37]:

$$\begin{aligned} \frac{\mathrm{d}^2{\Psi (r)}}{\mathrm{d}{r^2}}&+ \frac{{\alpha _1}-{\alpha _2}r}{r\left( 1-{\alpha _3}r\right) } \frac{\mathrm{d}{\Psi (r)}}{\mathrm{d}{r}}+\frac{1}{{r^2}\left( 1-{\alpha _3}r\right) ^2} \nonumber \\&\times \{- {\xi _1}r^2+ {\xi _2}r -{\xi _3}\} \Psi (r)= 0. \end{aligned}$$
(A1)

According to the NU method, the equations of energy eigenvalues and eigenfunctions, respectively, are obtained from

$$\begin{aligned}&{\alpha _2}n-(2n+1){\alpha _5}+(2n+1)(\sqrt{\alpha _9}+{\alpha _3}\sqrt{\alpha _8}) \nonumber \\&\quad + n(n-1){\alpha _3}+ {\alpha _7}+ 2{\alpha _3}{\alpha _8}+ 2 \sqrt{{\alpha _8}{\alpha _9}} = 0, \end{aligned}$$
(A2)
$$\begin{aligned} \Psi (r)= & {} r^{\alpha _{12}}\left( 1-{\alpha _3}r\right) ^{{- \alpha _{12}}-\left( {\alpha _{13}}/{\alpha _3}\right) } \nonumber \\&\times P_n^{\left( {\alpha _{10}}-1,\left( {\alpha _{11}}/{\alpha _3}\right) -{\alpha _{10}}-1\right) } \left( 1-2{\alpha _3}r\right) , \end{aligned}$$
(A3)

where

$$\begin{aligned}&{\alpha _4} = \frac{1}{2} \left( {1 - {\alpha _1}} \right) , \quad {\alpha _5} = \frac{1}{2} \left( {{\alpha _2} - 2 {\alpha _3}} \right) , \nonumber \\&{\alpha _6} = \alpha _5^2 + {\xi _1}, \quad {\alpha _7} = 2\,{\alpha _4}\,{\alpha _5}\, - {\xi _2}, \nonumber \\&{\alpha _8} = \alpha _4^2 + {\xi _3}, \quad {\alpha _9} = {\alpha _3}\,{\alpha _7}\, + \,\alpha _3^2\,{\alpha _8}\, + \,{\alpha _6}, \nonumber \\&{\alpha _{10}} = {\alpha _1}\, + \,2\,{\alpha _4} + 2\sqrt{{\alpha _8}}, \nonumber \\&{\alpha _{11}} = {\alpha _2}\, - \,2\,{\alpha _5} + 2( {\sqrt{{\alpha _9}} \, + \,{\alpha _3}\,\sqrt{{\alpha _8}} } ), \nonumber \\&{\alpha _{12}} = {\alpha _4} + \sqrt{{\alpha _8}}, \quad {\alpha _{13}} = \,{\alpha _5}\, - \,( {\sqrt{{\alpha _9}} \, + \,\,{\alpha _3}\,\sqrt{{\alpha _8}} } ). \nonumber \\ \end{aligned}$$
(A4)

In the special case of \( {\alpha _3} = 0 \) [38]

$$\begin{aligned}&\mathop {\lim }\limits _{{\alpha _3} \rightarrow 0} P_n^{({\alpha _{10}-1, ({\alpha _{11}}/{\alpha _3})}-{\alpha _{10}}-1)} \left( 1-{\alpha _3} r\right) \nonumber \\&\quad = L_n^{\alpha _{10}-1} \left( \alpha _{11} r\right) , \end{aligned}$$
(A5)
$$\begin{aligned}&\mathop {\lim }\limits _{{\alpha _3} \rightarrow 0} \left( 1-{\alpha _3} r\right) ^{-\alpha _{12}} - \frac{\alpha _{13}}{\alpha _3} = \mathrm {e}^{\alpha _{13}r} \end{aligned}$$
(A6)

and

$$\begin{aligned} {\Psi _n}(r) = r^{\alpha _{12}} \mathrm {e}^{\alpha _{13}r} {L_n}^{\alpha _{10}-1} \left( {\alpha _{11}r}\right) . \end{aligned}$$
(A7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M., Hassanabadi, H. & Hassanabadi, S. The Weyl equation under an external electromagnetic field in the cosmic string space–time. Pramana - J Phys 93, 16 (2019). https://doi.org/10.1007/s12043-019-1777-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1777-4

Keywords

PACS Nos

Navigation