Skip to main content
Log in

Quantum coupling and electrothermal effects on electron transport in high-electron mobility transistors

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Based on the energy and momentum balance equations and three-dimensional Schrödinger equations, a physical model of the quantum coupling and electrothermal effects on the electron transport in GaN transistors is proposed. Quantum coupling and electrothermal effects in GaN transistors cause a reduction in the barrier height, changes in the quantised energy levels of the two-dimensional electron gas, and a decrease in the electron density and source–drain current. This model predicts that the current collapse in GaN transistors can occur under channel electrons with large transverse energy and it can be alleviated by optimising the physical device parameters. The gate length-dependent resistance predicted by the proposed model agrees well with the experimental data reported in the literature. Not only the physical mechanism but also the possibility to improve the reliability of high-electron mobility (HEMT) GaN transistors by optimising its physical parameters has been given in this model due to its analytic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J A Mittereder, S C Binari, P B Klein, J A Roussos, D S Katzer, D F Storm, D D Koleske, A E Wickenden and R L Henry, Appl. Phys. Lett. 83, 1650 (2003)

    Article  ADS  Google Scholar 

  2. M J Uren, J Möreke and M Kuball, IEEE Trans. Electron. Dev. 59, 3327 (2012)

    Article  ADS  Google Scholar 

  3. E Zanoni, G Meneghesso, G Verzellesi, F Danesin, M Meneghini, F Rampazzo, A Tazzoli and F Zanon, IEDM Technical Digest (Washington, USA, 1997) pp. 381–384

  4. C Lee, H Tserng, L Witkowski, P Saunier, S Guo, B Albert, R Birkhahn and G Munns, Electron. Lett. 40, 1147 (2004)

    Article  Google Scholar 

  5. M Iqbal, P S Ko and S D Kim, Curr. Appl. Phys. 14, 1099 (2014)

    Article  ADS  Google Scholar 

  6. T Mizutani, Y Ohno, M Akita, S Kishimoto and K Maezawa, IEEE Trans. Electron. Dev. 50, 2015 (2003)

    Article  ADS  Google Scholar 

  7. M J Anand, G I Ng, S Vicknesh, S Arulkumaran and K Ranjan, Phys. Status Solidi C 10, 1421 (2013)

    Article  ADS  Google Scholar 

  8. D Jin, J Joh, S Krishnan, N Tipirneni, S Pendharkar and J A del Alamo, IEDM Technical Digest (Washington, USA, 2013) pp. 148–151

  9. B M Green, K K Chu, E M Chumbes, J A Smart, J R Shealy and L F Eastman, IEEE Electron. Dev. Lett. 21, 268 (2000)

  10. A P Edwards, J A Mittereder, S C Binari, D S Katzer, D F Storm and J A Roussos, IEEE Electron. Dev. Lett. 26, 225 (2005)

    Article  Google Scholar 

  11. S M Razavi, S H Zahiri and S E Hosseini, Pramana – J. Phys. 88: 85 (2017)

    Article  Google Scholar 

  12. R Swain, K Jena and T R Lenka, Pramana – J. Phys. 88: 3 (2017)

    Article  ADS  Google Scholar 

  13. K Jena, R Swain and T R Lenka, Pramana – J. Phys. 85, 1221 (2015)

  14. J Joh and J A Del Alamo, IEEE Electron. Dev. Lett. 29, 287 (2008)

  15. X D Wang, W D Hu, X S Chen and W Lu, IEEE Trans. Electron. Dev. 59, 1393 (2012)

    Article  ADS  Google Scholar 

  16. G Meneghesso, G Verzellesi, F Danesin, F Rampazzo, F Zanon, A Tazzoli, M Meneghini and E Zanoni, IEEE Trans. Device Mater. Reliab. 8, 332 (2008)

    Article  Google Scholar 

  17. K Fushinobu and T Hatakeyama, Trans. Jpn. Inst. Electron. Packag. 4, 31 (2011)

    Article  Google Scholar 

  18. H Rao and G Bosman, Solid State Electron. 79, 11 (2013)

    Article  ADS  Google Scholar 

  19. L F Mao, Pramana – J. Phys. 72, 407 (2009)

  20. L F Mao, H Ning and J Y Wang, PLoS One 10, e0128438 (2015)

    Article  Google Scholar 

  21. L F Mao, H Ning, Z L Huo and J Y Wang, Sci. Rep. 5, 18307 (2015)

    Article  ADS  Google Scholar 

  22. L F Mao, H Ning, Z Lu and G Wang, Sci. Rep. 6, 24777 (2016)

    Article  ADS  Google Scholar 

  23. L F Mao, ETRI J. 39, 284 (2017)

    Article  Google Scholar 

  24. L F Mao, J Wang, L Li, H Ning and C Hu, Carbon 119, 446 (2017)

    Article  Google Scholar 

  25. I Hwang, J Kim, H-S Choi, J Oh, J-K Shin and U-I Chung, IEEE Electron. Dev. Lett. 34, 1494 (2013)

  26. L F Mao, Appl. Phys. Lett. 90, 183511 (2007)

    Article  ADS  Google Scholar 

  27. L F Mao, Appl. Phys. Lett. 91, 123519 (2007)

    Article  ADS  Google Scholar 

  28. L F Mao, IEEE Electron. Dev. Lett. 28, 161 (2007)

  29. L F Mao, IEEE Trans. Electron. Dev. 55, 782 (2008)

  30. L F Mao, Solid State Electron. 52, 186 (2008)

    Article  ADS  Google Scholar 

  31. L F Mao, ETRI J. 32, 68 (2010)

    Article  Google Scholar 

  32. R G Southwick, J Reed, C Buu, H Bui, R Butler, G Bersuker and W B Knowlton, IEEE International Integrated Reliability Workshop (S. Lake Tahoe, USA, 2008) pp. 48–54

  33. W D Hu, X S Chen, Z J Quan, C S Xia, W Lu and P D Ye, J. Appl. Phys. 100, 074501 (2006)

    Article  ADS  Google Scholar 

  34. D Bisi, M Meneghini, C de Santi, A Chini, M Dammann, P Brückner, M Mikulla, G Meneghesso and E Zanoni, IEEE Trans. Electron. Dev. 60, 3166 (2013)

  35. S Kaneko, M Kuroda, M Yanagihara, A Ikoshi, H Okita, T Morita, K Tanaka, M Hikita, Y Uemoto, S Takahashi and T Ueda, Proceedings of IEEE 27th International Symposium on Power Semiconductor Devices and ICs (Hong Kong, China, 2015) pp. 41–44

  36. H Jiang, J M Hinckley and J Singh, IEEE J. Quant. Electron. 33, 1779 (1997)

  37. C Moglestue, J. Appl. Phys. 59, 3175 (1986)

    Article  ADS  Google Scholar 

  38. F Stern, Phys. Rev. B 5, 4891 (1972)

    Article  ADS  Google Scholar 

  39. S Rabbaa and J Stiens, J. Phys. D 44, 325103 (2011)

    Article  Google Scholar 

  40. W Liu, Fundamentals of III–V devices—HBTs, MESFETs, and HFETs \({/}\) HEMTs (Wiley, Hoboken, NJ, 1999)

    Google Scholar 

  41. A Kranti, S Haldar and R S Gupta, Solid State Electron. 46, 621 (2002)

    Article  ADS  Google Scholar 

  42. M A Huque, S A Eliza, T Rahman, H F Huq and S K Islam, Solid State Electron. 53, 134 (2009)

    Article  Google Scholar 

  43. A Loghmany and P Valizadeh, J. Phys. D 44, 125102 (2011)

    Article  ADS  Google Scholar 

  44. S Khandelwal, Y S Chauhan and T A Fjeldly, IEEE Trans. Electron. Dev. 59, 2856 (2012)

    Article  ADS  Google Scholar 

  45. T Sawada, Y Ito, K Imai, K Suzuki, H Tomozawa and S Sakai, Appl. Surf. Sci. 159, 449 (2000)

    Article  ADS  Google Scholar 

  46. A S Barker and M Ilegems, Phys. Rev. B 7, 743 (1973)

    Article  ADS  Google Scholar 

  47. D Wang, W D Hu, X S Chen, J T Xu, X Y Li and W Lu, Opt. Quant. Electron. 42, 755 (2011)

    Article  Google Scholar 

  48. Y I Alivov, E V Kalinina, A E Cherenkov, D C Look, B M Ataev, A K Omaev, M V Chukichev and D M Bagnall, Appl. Phys. Lett. 83, 4719 (2003)

    Article  ADS  Google Scholar 

  49. T R Lenka and A K Panda, Pramana – J. Phys. 79, 151 (2012)

    Article  ADS  Google Scholar 

  50. T H Yu and K F Brennan, J. Appl. Phys. 89, 3827 (2001)

    Article  ADS  Google Scholar 

  51. P Rinke, M Winkelnkemper, A Qteish, D Bimberg, J Neugebauer and M Scheffler, Phys. Rev. B 77, 075202 (2008)

    Article  ADS  Google Scholar 

  52. S Schöche, P Kühne, T Hofmann, M Schubert, D Nilsson, A Kakanakova-Georgieva, E Janzén and V Darakchieva, Appl. Phys. Lett. 103, 212107 (2013)

    Article  ADS  Google Scholar 

  53. D J As, A Zado, Q Y Wei, T Li, J Y Huang and F A Ponce, Jpn. J. Appl. Phys. 52, 08JN04 (2013)

  54. X Yi, H Sun, Y Xiao, H Yang and K Fu, OSA-IEEE-COS. (Guangzhou, China, 2010) pp. 1–4

  55. Y R Wu, J M Hinckley and J Singh, J. Electron. Mater. 37, 578 (2008)

    Article  ADS  Google Scholar 

  56. D Pavlidis, European Galliun Arsenide Related III–V Compound Application Symposium (Amsterdam, Netherlands, 2004) pp. 551–554

  57. M Wraback, H Shen, J C Carrano, C J Collins, J C Campbell, R D Dupuis, M J Schurman and I T Ferguson, Appl. Phys. Lett. 79, 1303 (2001)

    Article  ADS  Google Scholar 

  58. C H Oxley, M J Uren, A Coates and D G Hayes, IEEE Trans. Electron. Dev. 53, 565 (2006)

    Article  ADS  Google Scholar 

  59. B Padmanabhan, D Vasileska and S M Goodnick, J. Comput. Electron. 11, 129 (2012)

    Article  Google Scholar 

  60. R Quay, Analysis and simulation of high electron mobility transistors, Ph.D. dissertation (Technische Universität Wien, 2001)

  61. S Yagi, S Hirata, Y Sumida, A Nakajima, H Kawai, E M Sankara Narayanan, Proceedings of the SSDM (Nagoya, Japan, 2011) pp. 570–571

  62. C Zhang, M Wang, B Xie, C P Wen, J Wang, Y Hao, W Wu, K J Chen and B Shen, IEEE Trans. Electron. Dev. 62, 2475 (2015)

    Article  ADS  Google Scholar 

  63. C S Oh, C J Youn, G M Yang, K Y Lim and J W Yang, Appl. Phys. Lett. 86, 012106 (2005)

    Article  ADS  Google Scholar 

  64. A C Schmitz, A T Ping, M Asif Khan, Q Chen, J W Yang and I Adesida, J. Electron. Mater. 27, 255 (1998)

  65. S O Kasap, Principles of electronic materials and devices, 3rd edn (McGraw-Hill, New York, 2005)

    Google Scholar 

  66. T Kawanago, K Kakushima, Y Kataoka, A Nishiyama, N Sugii, H Wakabayashi, K Tsutsui, K Natori and H Iwai, ESSDERC (Bucharest, Romania, 2013) pp. 107–110

  67. T H Yu and K F Brennan, J. Appl. Phys. 91, 3730 (2002)

    Article  ADS  Google Scholar 

  68. A Kasic, M Schubert, S Einfeldt, D Hommel and T E Tiwald, Phys. Rev. B 62, 7365 (2000)

    Article  ADS  Google Scholar 

  69. C E Dreyer, A Janotti and C G Van de Walle, Appl. Phys. Lett. 102, 142105 (2013)

    Article  ADS  Google Scholar 

  70. T Hofmann, P Kühne, S Schöche, J-T Chen, U Forsberg, E Janzén, N Ben Sedrine, C M Herzinger, J A Woollam, M Schubert and V Darakchieva, Appl. Phys. Lett. 101, 192102 (2012)

    Article  ADS  Google Scholar 

  71. B E Foutz, S K O’Leary, M S Shur and L F Eastman, J. Appl. Phys. 85, 7727 (1999)

    Article  ADS  Google Scholar 

  72. G Simin, A Koudymov, A Tarakji, X Hu, J Yang and M Asif Khan, Appl. Phys. Lett. 79, 2651 (2001)

    Article  ADS  Google Scholar 

  73. K Itagaki, N Kobayashi and K Horio, Phys. Status. Solidi C 4, 2666 (2007)

    Article  ADS  Google Scholar 

  74. T Ahmed, M T A Khan and M S Islam, IEEE International Conference on Devices, Circuits and Systems (Coimbatore, India, 2012) pp. 226–229

  75. W Saito, Y Kakiuchi, T Nitta, Y Saito, T Noda, H Fujimoto, A Yoshioka, T Ohno and M Yamaguchi, IEEE Electron. Dev. Lett. 31, 659 (2010)

    Article  Google Scholar 

  76. D W DiSanto, H F Sun and C R Bolognesi, Appl. Phys. Lett. 88, 013504 (2006)

    Article  ADS  Google Scholar 

  77. M Meneghini, O Hilt, J Wuerfl and G Meneghesso, Energies 10, 153 (2017)

    Article  Google Scholar 

  78. B K Ridley, Rep. Prog. Phys. 54, 169 (2002)

    Article  ADS  Google Scholar 

  79. N Balkan, M C Arikan, S Gokden, V Tilak, B Schaff and R J Shealy, J. Phys. Condens. Mater. 14, 3457 (2002)

    Article  ADS  Google Scholar 

  80. N Balkan, R Gupta, M E Daniels, B K Ridley and M Emeny, Semicond. Sci. Tech. 5, 986 (1990)

    Article  ADS  Google Scholar 

  81. N Karl, Organic electronic materials (Springer, Berlin, Heidelberg, 2001)

    Google Scholar 

Download references

Acknowledgements

The author acknowledges the financial support from the National Natural Science Foundation of China under Grant No. 61774014 and the Central Universities under Grant No. 06500010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Feng Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, LF. Quantum coupling and electrothermal effects on electron transport in high-electron mobility transistors. Pramana - J Phys 93, 11 (2019). https://doi.org/10.1007/s12043-019-1769-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1769-4

Keywords

PACS Nos

Navigation