Skip to main content
Log in

Modelling of capacitance and threshold voltage for ultrathin normally-off AlGaN/GaN MOSHEMT

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A compact quantitative model based on oxide semiconductor interface density of states (DOS) is proposed for Al0.25Ga0.75N/GaN metal oxide semiconductor high electron mobility transistor (MOSHEMT). Mathematical expressions for surface potential, sheet charge concentration, gate capacitance and threshold voltage have been derived. The gate capacitance behaviour is studied in terms of capacitance–voltage (CV) characteristics. Similarly, the predicted threshold voltage (V T) is analysed by varying barrier thickness and oxide thickness. The positive V T obtained for a very thin 3 nm AlGaN barrier layer enables the enhancement mode operation of the MOSHEMT. These devices, along with depletion mode devices, are basic constituents of cascode configuration in power electronic circuits. The expressions developed are used in conventional long-channel HEMT drain current equation and evaluated to obtain different DC characteristics. The obtained results are compared with experimental data taken from literature which show good agreement and hence endorse the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Z H Feng et al, Electron Device Lett. 31(12), 1386 (2010)

    Article  ADS  Google Scholar 

  2. T R Lenka and A K Panda, Semiconductors 45(9), 1211 (2011)

    Article  ADS  Google Scholar 

  3. T R Lenka and A K Panda, Semiconductors 45(5), 660 (2011)

    ADS  Google Scholar 

  4. M Miyoshi, M Sakai, S Arulkumaran, H Ishikawa, T Egawa, M Tanaka, and O Oda, Jpn J. Appl. Phys. 43(12), 7939 (2004)

    Article  ADS  Google Scholar 

  5. M Higashiwaki, R Chu, and U K Mishra, IEEE Trans. Electron Device 58(11), 1681 (2011)

    Article  ADS  Google Scholar 

  6. P Ye, B Yang, K Ng, J Bude, G Wilk, S Halder, and J Hwang, Int. J. High Speed Electron. Systems 14(3), 791 (2004)

    Article  Google Scholar 

  7. A Colon and J Shi, Solid State Electron. 99, 25 (2014)

    Article  ADS  Google Scholar 

  8. R Swain, J Panda, K Jena, and T R Lenka, J. Comput. Electron. 14(03), 754 (2015)

    Article  Google Scholar 

  9. C J Kirkpatrick et al, Electron Device Lett. 33, 1240 (2012)

  10. A Endoh et al, Jpn J. Appl. Phys. 43(4B), 2255 (2004)

    Article  ADS  Google Scholar 

  11. R Brown et al, Electron Device Lett. 35(9), 906 (2014)

    Article  ADS  Google Scholar 

  12. S Khandelwal and T A Fjeldly, Solid State Electron. 76, 60 (2012)

    Article  ADS  Google Scholar 

  13. F M Yigletu and S Khandelwal, IEEE Trans. Electron Devices 60(11), 3746 (2013)

    Article  ADS  Google Scholar 

  14. O Ambacher et al, Appl. Phys. Lett. 85(6), 3222 (1999)

    Google Scholar 

  15. M Tapajna and J Kuzmík, Jpn. J. Appl. Phys. 52, o8JN081-5 (2013)

    Article  Google Scholar 

  16. S Kola, J M Golio, and G N Maracas, IEEE Electron Device Lett. 9(30), 136 (1988)

    Article  ADS  Google Scholar 

  17. M Li and Y Wang, IEEE Trans. Electron Devices 55(1), 261 (2008)

    Article  ADS  Google Scholar 

  18. X Cheng, M Li, and Y Wang, IEEE Trans. Electron Devices 56(12), 2881 (2009)

    Article  ADS  Google Scholar 

  19. K Jena, R Swain and T R Lenka, Pramana – J. Phys. DOI:10.1007/s12043-015-0948-1 (2015)

  20. D Yan, H Lu, D Cao, D Chen, R Zhang, and Y Zheng, Appl. Phys. Lett. 97(15), 153503 (2010)

    Article  ADS  Google Scholar 

  21. D A Deen and J G Champlain, Appl. Phys. Lett. 99, 53501 (2011)

    Article  ADS  Google Scholar 

  22. K Jena, R Swain, and T R Lenka, J. Semiconductors 36(3), 034003 (2015)

    Article  ADS  Google Scholar 

  23. S M Sze, Physics of semiconductor devices, 3rd edn (John Wiley & Sons, 2007)

  24. J Robertson and B Falabretti, J. Appl. Phys. 100, 0141111–8 (2006)

    Article  Google Scholar 

  25. S Arulkumaran, T Egawa, and H Ishikawa, Jpn J. Appl. Phys. 44, 812 (2005)

    Article  ADS  Google Scholar 

  26. Z Wang, B Zhang, W Chen, and Z Li, IEEE Trans. Electron Devices 60(5), 1607 (2013)

    Article  ADS  Google Scholar 

  27. J H Bae, I Hwang, J M Shin, H -I Kwon, C H Park, J Ha, J Lee, H Choi, J Kim, J B Park, J Oh, J Shin, U I Chung, and J H Lee, Proceedings of IEEE IEDM, 303 (2012)

  28. SILVACO, International Incorporated, ATLAS User’s Manual, Version 5.12.0.R. USA, Silvaco inc. (2010)

  29. R Brown, A Al-Khalidi, D Macfarlane, S Taking, G Ternent, I Thayne, and E Wasige, Phys. Status Solidi C 11, 844 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Microelectronics Computational Lab in the Department of Electronics & Communication Engineering of National Institute of Technology Silchar, India for providing all necessary facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T R LENKA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SWAIN, R., JENA, K. & LENKA, T.R. Modelling of capacitance and threshold voltage for ultrathin normally-off AlGaN/GaN MOSHEMT. Pramana - J Phys 88, 3 (2017). https://doi.org/10.1007/s12043-016-1310-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1310-y

Keywords

PACS Nos

Navigation