Skip to main content
Log in

Energy of electrons at the interaction of femtosecond laser with argon nanocluster

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The interaction of intense femtosecond laser pulses with argon nanoclusters is studied using nanoplasma model. Based on the dynamic simulations, ionisation process, heating, and expansion of an argon nanocluster irradiated by an intense femtosecond laser pulse are investigated. The analytical calculation provides ionisation rate for different mechanisms and time evolution of hydrodynamic pressure for various pulse shapes. In this work, the dependence of laser intensity, initial ion density and pulse shape on the electron pressure, the density of electrons and electron temperature are presented. It is noticed that the negative and positive chirped pulses and initial ion density implement some modifications on the current calculation models. It is found that reducing the initial ion density at a laser intensity of about \(1\times 10^{16} \, \hbox {W}/hbox{cm}^{2}\) increases the energy of electrons. By applying a positive chirp laser pulse during interaction with nanoclusters, both electron density and ultimately electron pressure are improved by about 22%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D Strickland and G Mourou, Opt. Commun. 55(6), 447 (1985)

    Article  ADS  Google Scholar 

  2. R Sadighi-Bonabi, E Irani, B Safaie, K Imani, M Silatani and S Zare, Energy Convers. Manag. 51(4), 636 (2010)

    Article  Google Scholar 

  3. L Chen, M Kando, M H Xu, Y T Li, J Koga, M Chen, H Xu, X H Yuan, Q L Dong, Z M Sheng and S V Bulanov, Phys. Rev. Lett. 100(4), 045004 (2008)

    Article  ADS  Google Scholar 

  4. H Ghaforyan, M Ebrahimzadeh, T Ghaffary, H Rezazadeh and Z S Jahromi, Chin. J. Phys. 52(1), 233 (2014)

    Google Scholar 

  5. R Sadighi-Bonabi, H Hora, Z Riazi, E Yazdani and S K Sadighi, Laser Part. Beams 28(1), 101 (2010)

    Article  ADS  Google Scholar 

  6. R Sadighi-Bonabi, F W Lee and C B Collins, J. Appl. Phys. 53(12), 8508 (1982)

    Article  ADS  Google Scholar 

  7. H Ghaforyan, R Sadighi-Bonabi and E Irani, Adv. High Energy Phys. 2016, 1 (2016)

    Article  Google Scholar 

  8. X Qi and W Lin, Pramana – J. Phys. 88(2): 35 (2017)

    Article  ADS  Google Scholar 

  9. S Rasti, E Irani and R Sadighi-Bonabi, AIP Adv. 5(11), 117105 (2015)

    Article  ADS  Google Scholar 

  10. K W Ledingham, P McKenna and R P Singhal, Science 300(5622), 1107 (2003)

    Article  ADS  Google Scholar 

  11. B Cui, B Tang, R Ma, Q Huang, Y Ma, L Chen and W Jiang, Rev. Sci. Instrum. 83(2), 02A321 (2012)

    Article  Google Scholar 

  12. E Yazdani, R Sadighi-Bonabi, H Afarideh, Z Riazi and H Hora, J. Appl. Phys. 116(10), 103302 (2014)

    Article  ADS  Google Scholar 

  13. S Zare, E Yazdani, R Sadighi-Bonabi, A Anvari and H Hora, J. Appl. Phys. 117(14), 143303 (2015)

    Article  ADS  Google Scholar 

  14. F N Beg, K Krushelnick, C Gower, S Torn, A E Dangor, A Howard, T Sumner, A Bewick, V Lebedenko, J Dawson and D Davidge, Appl. Phys. Lett. 80(16), 3009 (2002)

    Article  ADS  Google Scholar 

  15. V D Zvorykin, A O Levchenko, A V Shutov, E V Solomina, N N Ustinovskii and I V Smetanin, Phys. Plasmas 19(3), 033509 (2012)

    Article  ADS  Google Scholar 

  16. N L Kugland, B Aurand, C G Brown, C G Constantin, E T Everson, S H Glenzer, D B Schaeffer, A Tauschwitz and C Niemann, Appl. Phys. Lett. 101(2), 024102 (2012)

    Article  ADS  Google Scholar 

  17. L Zhang, L M Chen, W M Wang, W C Yan, D W Yuan, J Y Mao, Z H Wang, C Liu, Z W Shen, A Faenov and T Pikuz, Appl. Phys. Lett. 100(1), 014104 (2012)

    Article  ADS  Google Scholar 

  18. T Ditmire, T Donnelly, A M Rubenchik, R W Falcone and M D Perry, Phys. Rev. A 53(5), 3379 (1996)

    Article  ADS  Google Scholar 

  19. S Micheau, H Jouin and B Pons, Phys. Rev. A 77(5), 053201 (2008)

    Article  ADS  Google Scholar 

  20. O F Hagena and W Obert, J. Chem. Phys. 56(5), 1793 (1972)

    Article  ADS  Google Scholar 

  21. C Rose-Petruck, K J Schafer, K R Wilson and C P Barty, Phys. Rev. A 55(2), 1182 (1997)

    Article  ADS  Google Scholar 

  22. I Last and J Jortner, Phys. Rev. Lett. 87(3), 033401 (2001)

    Article  ADS  Google Scholar 

  23. D Brunner, H Angerer, E Bustarret, F Freudenberg, R Höpler, R Dimitrov, O Ambacher and M Stutzmann, J. Appl. Phys. 82(10), 5090 (1997)

    Article  ADS  Google Scholar 

  24. H M Milchberg, S J McNaught and E Parra, Phys. Rev. E 64(5), 056402 (2001)

    Article  ADS  Google Scholar 

  25. M V Ammosov, N B Delone and V P Krainov, J. Exp. Theor. Phys. 64(6), 1191 (1986)

    Google Scholar 

  26. W Lotz, Z. Phys. A 232(2), 101 (1970)

    Article  Google Scholar 

  27. J S Zweiback, Resonance effects in laser cluster interactions, Ph.D. dissertation (University of California, Davis, 1999)

  28. J D Jackson, Classical electrodynamics (Wiley, New York, 1975) Vol. 523

    MATH  Google Scholar 

  29. V P Silin, Sov. Phys. JETP 20(6), 1510 (1965)

    Google Scholar 

  30. O F Kostenko and N E Andreev, Plasma Phys. Rep. 33(6), 503 (2007)

    Article  ADS  Google Scholar 

  31. A F Haught, W B Ard, W J Fader, R A Jong, A Sing, D H Polk, R G Tomlinson and J T Woo, Fifth Conference Proceedings (Tokyo, 1974) p. 391

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ghaforyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaforyan, H. Energy of electrons at the interaction of femtosecond laser with argon nanocluster. Pramana - J Phys 92, 81 (2019). https://doi.org/10.1007/s12043-019-1734-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1734-2

Keywords

PACS Nos

Navigation