Skip to main content

Dynamics of Atomic Clusters Under Intense Femtosecond Laser Pulses

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science XII

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 112))

  • 682 Accesses

Abstract

This chapter presents a review of theoretical modelling of intense ultrashort laser interaction with atomic clusters. We start with a brief description of interaction of laser with gas atoms and solid targets. This is followed by a general introduction of the non-linear, non-perturbative interaction of strong laser fields with atomic clusters. Various theoretical models are presented to explain the rich features observed in laser irradiated clusters. A molecular dynamic model developed by us to study laser-cluster interaction is briefly described.Various problems of contemporary interest like anisotropic emission of ions from argon and xenon clusters, effect of carrier-envelope phase on ionization dynamic of xenon clusters, neutron emission from deuterium clusters etc. are investigated and main results of these studies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(mathcal{E}_a\) is the strength of the Coulomb field experienced by an electron in the first Bohr orbit of the hydrogen atom which comes out to be equal to \(5.1\times 10^9\) V/cm\(^{-1}\). When expressed in terms of intensity, it is equal to \(3.5\times 10^{16}\) Wcm\(^{-2}\).

  2. 2.

    The total charge (Q) build up on the cluster is sum of total ionic charge (\(Q_{ion}\)) and the charge of inner electrons.

  3. 3.

    Non-ideal rates are electron impact ionization rates that incorporate the shift of ionization potential in the dense plasma system.

  4. 4.

    Adiabatic approximation is valid when tunnelling time is much smaller than laser time cycle so that electron sees a constant electric field at the time of tunnelling.

References

  1. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985)

    Article  ADS  Google Scholar 

  2. P. Maine et al., IEEE J. Quantum Electron. 24, 398 (1988)

    Article  ADS  Google Scholar 

  3. D.E. Spence et al., Opt. Lett. 16, 42 (1991)

    Article  ADS  Google Scholar 

  4. M. Protopapas et al., Rep. Prog. Phys. 60, 389 (1997)

    Article  ADS  Google Scholar 

  5. P. Agostini et al., Phys. Rev. Lett. 42, 1127 (1979)

    Article  ADS  Google Scholar 

  6. A. McPherson et al., J. Opt. Soc. Am. B 4, 595 (1987)

    Article  ADS  Google Scholar 

  7. M. Ferray et al., J. Phys. B At. Mol. Opt. Phys. 21, L31 (1988)

    Google Scholar 

  8. A.D. Bandrauk, Molecules in Laser Fields (5. Marcel Dekker Inc., New York, 1994)

    Google Scholar 

  9. W. Kruer, The Physics of Laser Plasma Interactions (Reading, MA (US), Addison-Wesley Publishing Co., 1988)

    Google Scholar 

  10. M.M. Murnane et al., Science 251, 531 (1991)

    Article  ADS  Google Scholar 

  11. B.M. Hegelich et al., Nature 439, 441 (2006)

    Article  ADS  Google Scholar 

  12. V. Malka et al., Nature 431, 541 (2004)

    Article  ADS  Google Scholar 

  13. B.A. Remington et al., Science 284, 1488 (1999)

    Article  ADS  Google Scholar 

  14. V.P. Krainov, M.B. Smirnov, Phys. Rep. 370, 237 (2002)

    Article  ADS  Google Scholar 

  15. T. Fennel et al., Rev. Mod. Phys. 82, 1793 (2010)

    Article  ADS  Google Scholar 

  16. R.L. Johnston, Atomic and Molecular Clusters (Taylor & Francis, New York, 2002)

    Book  Google Scholar 

  17. F. Calvayrac et al., Phys. Rep. 337, 493 (2000)

    Article  ADS  Google Scholar 

  18. P.-G. Reinhard, E. Suraud, Introduction to Cluster Dynamics (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004)

    Google Scholar 

  19. L. Köller et al., Phys. Rev. Lett. 82, 3783 (1999)

    Article  ADS  Google Scholar 

  20. T. Döppner et al., Phys. Rev. Lett. 94, 013401 (2005)

    Article  ADS  Google Scholar 

  21. T. Ditmire et al., Phys. Rev. Lett. 78, 3121 (1997)

    Article  ADS  Google Scholar 

  22. T. Ditmire et al., Phys. Rev. Lett. 78, 2732 (1997)

    Article  ADS  Google Scholar 

  23. T. Ditmire et al., Nature (London) 386, 54 (1997)

    Article  ADS  Google Scholar 

  24. Y.L. Shao et al., Phys. Rev. Lett. 77, 3343 (1996)

    Article  ADS  Google Scholar 

  25. A. McPherson et al., Nature 370, 631 (1994)

    Article  ADS  Google Scholar 

  26. T. Ditmire et al., Phys. Rev. Lett. 75, 3122 (1995)

    Article  ADS  Google Scholar 

  27. T. Ditmire et al., Phys. Rev. A 53, 3379 (1996)

    Article  ADS  Google Scholar 

  28. Y. Fukuda et al., Phys. Rev. Lett. 103, 165002 (2009)

    Article  ADS  Google Scholar 

  29. A.B. Borisov et al., J. Phys. B At. Mol. Opt. Phys. 36, 3433 (2003)

    Google Scholar 

  30. T. Ditmire et al., Nature 398, 489 (1999)

    Article  ADS  Google Scholar 

  31. V. Kumarappan et al., Phys. Rev. Lett. 94, 205004 (2005)

    Article  ADS  Google Scholar 

  32. B. Shim et al., Phys. Rev. Lett. 98, 123902 (2007)

    Article  ADS  Google Scholar 

  33. S. Dobosz et al., Phys. Rev. A 56, R2526 (1997)

    Article  ADS  Google Scholar 

  34. M. Lezius et al., Phys. Rev. Lett. 80, 261 (1998)

    Article  ADS  Google Scholar 

  35. J. Zweiback et al., Phys. Rev. A 59, R3166 (1999)

    Article  ADS  Google Scholar 

  36. H. Wabnitz et al., Nature 420, 482 (2002)

    Article  ADS  Google Scholar 

  37. T. Laarmann et al., Phys. Rev. Lett. 92 (2004)

    Google Scholar 

  38. T. Laarmann et al., Phys. Rev. Lett. 95, 063402 (2005)

    Article  ADS  Google Scholar 

  39. C. Bostedt, et al., Phys. Rev. Lett. 100 (2008)

    Google Scholar 

  40. H. Thomas, et al., J. Phys. B At. Mol. Opt. Phys. 42, 134018 (2009)

    Google Scholar 

  41. O.F. Hagena, W. Obert, J. Chem. Phys. 56, 1793 (1972)

    Article  ADS  Google Scholar 

  42. O.F. Hagena, Rev. Sci. Instrum. 63, 2374 (1992)

    Article  ADS  Google Scholar 

  43. K. Mendham et al., Phys. Rev. A 64, 055201 (2001)

    Article  ADS  Google Scholar 

  44. J. Wormer et al., Chem. Phys. Lett. 159, 321 (1989)

    Article  ADS  Google Scholar 

  45. F. Dorchies et al., Phys. Rev. A 68, 23201 (2003)

    Article  ADS  Google Scholar 

  46. I. Last, J. Jortner, Phys. Rev. A 60, 2215 (1999)

    Article  ADS  Google Scholar 

  47. L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)

    MathSciNet  Google Scholar 

  48. W. Lotz, Z. Phys. 216, 241 (1968)

    Article  ADS  Google Scholar 

  49. V.P. Krainov, J. Phys. B At. Mol. Opt. Phys. 33, 1585 (2000)

    Article  ADS  Google Scholar 

  50. U. Saalmann, J.M. Rost, Phys. Rev. Lett. 91, 223401 (2003)

    Article  ADS  Google Scholar 

  51. U. Saalmann et al., J. Phys. B At. Mol. Opt. Phys. 39, R39+ (2006)

    Google Scholar 

  52. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publishing, Orlando, 1976)

    Google Scholar 

  53. H.M. Milchberg et al., Phys. Rev. E 64, 056402 (2001)

    Article  ADS  Google Scholar 

  54. A.R. Holkundkar, N.K. Gupta, Phys. Plasmas 15, 013105 (2008)

    Article  ADS  Google Scholar 

  55. J. Liu et al., Phys. Rev. A 64, 033426 (2001)

    Article  ADS  Google Scholar 

  56. F. Megi et al., J. Phys. B At. Mol. Opt. Phys. 36, 273 (2003)

    Google Scholar 

  57. S. Micheau et al., High Energy Density Phys. 3, 191 (2007)

    Article  ADS  Google Scholar 

  58. P. Hilse et al., Laser Phys. 19, 428 (2009)

    Article  ADS  Google Scholar 

  59. J.C. Stewart, J.K.D. Pyatt, Astrophys. J. 144, 1203 (1966)

    Article  ADS  Google Scholar 

  60. P. Mulser et al., Phys. Rev. Lett. 95, 103401 (2005)

    Article  ADS  Google Scholar 

  61. P. Mulser, M. Kanapathipillai, Phys. Rev. A 71, 063201 (2005)

    Article  ADS  Google Scholar 

  62. I. Last, J. Jortner, Phys. Rev. A 62 (2000)

    Google Scholar 

  63. K. Ishikawa, T. Blenski, Phys. Rev. A 62, 063204 (2000)

    Article  ADS  Google Scholar 

  64. G. M. Petrov et al., Phys. Rev. E 71 (2005)

    Google Scholar 

  65. G.M. Petrov et al., Phys. Plasmas 12, 063103 (2005)

    Article  ADS  Google Scholar 

  66. G.M. Petrov, J. Davis, Eur. Phys. J. D 41, 629 (2007)

    Article  ADS  Google Scholar 

  67. M. Eloy et al., Phys. Plasmas 8 (2001)

    Google Scholar 

  68. Y. Kishimoto et al., Phys. Plasmas 9, 589 (2002)

    Article  ADS  Google Scholar 

  69. T. Taguchi et al., Phys. Rev. Lett. 92, 205003 (2004)

    Article  ADS  Google Scholar 

  70. C. Jungreuthmayer et al., Phys. Rev. Lett. 92, 133401 (2004)

    Article  ADS  Google Scholar 

  71. J. Barnes, P. Hut, Nature 324, 446 (1986)

    Article  ADS  Google Scholar 

  72. A.R. Holkundkar et al., Phys. Plasmas 18 (2011)

    Google Scholar 

  73. G. Mishra et al., Laser Part. Beams 29, 305 (2011)

    Article  ADS  Google Scholar 

  74. G.M. Petrov, J. Davis, Phys. Plasmas 15, 056705 (2008)

    Article  ADS  Google Scholar 

  75. I. Last, J. Jortner, Phys. Rev. A 75, 042507 (2007)

    Article  ADS  Google Scholar 

  76. M.V. Ammosov et al., Sov. Phys. JETP 64, 1191 (1986)

    Google Scholar 

  77. G. Voronov, At. Data. Nucl. Data Table 65, 1 (1997)

    Article  ADS  Google Scholar 

  78. E. Springate et al., Phys. Rev. A 61, 063201 (2000)

    Article  ADS  Google Scholar 

  79. V. Kumarappan et al., Phys. Rev. Lett. 87, 085005 (2001)

    Article  ADS  Google Scholar 

  80. V. Kumarappan et al., Phys. Rev. A 66, 33203 (2002)

    Article  ADS  Google Scholar 

  81. M. Krishnamurthy et al., Phys. Rev. A 69, 33202 (2004)

    Article  ADS  Google Scholar 

  82. D. Mathur et al., Phys. Rev. A 82, 025201 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  83. D. Mathur, F.A. Rajgara, J. Chem. Phys. 133, 061101 (2010)

    Google Scholar 

  84. E. Skopalová et al., Phys. Rev. Lett. 104, 203401 (2010)

    Article  ADS  Google Scholar 

  85. J. Kou et al., J. Chem. Phys. 112, 5012 (2000)

    Article  ADS  Google Scholar 

  86. M. Krishnamurthy et al., J. Phys. B At. Mol. Opt. Phys. 39, 625 (2006)

    Google Scholar 

  87. G. Mishra, N.K. Gupta, Europhys. Lett. 96, 63001 (2011)

    Article  ADS  Google Scholar 

  88. G. Mishra, N.K. Gupta, Phys. Plasmas 19, (2012)

    Google Scholar 

  89. T. Brabec, F. Krausz, Rev. Mod. Phys 72, 545 (2000)

    Article  ADS  Google Scholar 

  90. L. Xu et al., Opt. Lett. 21, 2008 (1996)

    Article  ADS  Google Scholar 

  91. D.J. Jones et al., Science 288, 635 (2000)

    Article  ADS  Google Scholar 

  92. A. Apolonski et al., Phys. Rev. Lett. 85, 740 (2000)

    Article  ADS  Google Scholar 

  93. A. Baltuska et al., Nature 421, 611 (2003)

    Article  ADS  Google Scholar 

  94. G.G. Paulus et al., Phys. Rev. Lett. 91, 253004 (2003)

    Article  ADS  Google Scholar 

  95. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  96. X. Liu, C.F. de Morisson, Faria. Phys. Rev. Lett. 92, 133006 (2004)

    Article  ADS  Google Scholar 

  97. G. Mishra, N.K. Gupta, J. Phys. B At. Mol. Opt. Phys. 46, 125602 (2013)

    Article  ADS  Google Scholar 

  98. D. Bauer, Laser Part. Beams 21, 489 (2003)

    Article  ADS  Google Scholar 

  99. J. Zweiback et al., Phys. Rev. Lett. 85, 3640 (2000)

    Article  ADS  Google Scholar 

  100. J. Zweiback et al., Phys. Rev. Lett. 84, 2634 (2000)

    Article  ADS  Google Scholar 

  101. K. Madison et al., Phys. Rev. Lett. 70, 053201 (2004)

    ADS  Google Scholar 

  102. I. Last, J. Jortner, Phys. Rev. Lett. 87, 033401 (2001)

    Article  ADS  Google Scholar 

  103. J. Davis et al., Phys. Plasmas 13, 064501 (2006)

    Article  ADS  Google Scholar 

  104. A.R. Holkundkar et al., Phys. Plasmas 21, 013101 (2014)

    Article  ADS  Google Scholar 

  105. J.D. Huba, NRL Plasma Formulary (Naval Research Laboratory, Washington, D.C., 2009)

    Google Scholar 

  106. J.F. Ziegler et al., Nucl. Instrum. Meth. B 268, 1818 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge many useful discussions and suggestions from Dr. Amol R Holkundkar. We are thankful to Dr. G.M. Petrov for useful inputs at the time of code development. We also acknowledge Prof. Deepak Mathur for suggesting the problem of anisotropic ion emission from clusters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mishra, G., Gupta, N.K. (2015). Dynamics of Atomic Clusters Under Intense Femtosecond Laser Pulses. In: Yamanouchi, K., Roso, L., Li, R., Mathur, D., Normand, D. (eds) Progress in Ultrafast Intense Laser Science XII. Springer Series in Chemical Physics(), vol 112. Springer, Cham. https://doi.org/10.1007/978-3-319-23657-5_4

Download citation

Publish with us

Policies and ethics