Skip to main content
Log in

Phase separation dynamics in binary systems containing mobile particles with variable Brownian motion

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This study investigates the spinodal decomposition dynamics in binary mixtures containing mobile particles by combining the Cahn–Hilliard equation with Langevin dynamics for particles with Brownian motion changes proportional to their mobility. We solve the Cahn–Hilliard equation numerically using a semi-implicit Fourier spectral method, and show that the domain growth rate first increases with the increase in particle mobility, and then decreases. The effect of filler particle concentration on the domain growth depends on its mobility: when the particle mobility is low, the domain growth rate decreases with the increase in particle concentration; whereas when the particle mobility is high, the domain growth rate decreases and then increases and finally decreases again with the increase in particle concentration. The proposed model suggests the possibility of controlling macroscopic behaviour of binary alloys by altering filler particle properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S Puri, Phase Transitions  77(5–7), 407 (2004)

    Article  Google Scholar 

  2. S Puri and V Wadhawan, Kinetics of phase transitions (CRC Press, Boca Raton, 2009)

  3. D Douglass and T Barbee, J. Mater. Sci.  4, 2 (1969)

    Article  Google Scholar 

  4. R Xie, A Karim, J F Douglas, C C Han and R A Weiss, Phys. Rev. Lett. 81, 6 (1998)

    Article  Google Scholar 

  5. K Yaldram and K Binder, J. Stat. Phys.  62, 2 (1991)

    Article  Google Scholar 

  6. S Puri and K Binder, Phys. Rev. E  49, 6 (1994)

    Google Scholar 

  7. S Puri, J. Phys.: Condens. Matter  17, 3 (2005)

    Google Scholar 

  8. S Puri and K Binder, Pramana – J. Phys.  64, 6 (2005)

    Article  Google Scholar 

  9. H Garcke, B Niethammer, M Rumpf and U Weikard, Acta Mater. 51, 10 (2003)

    Article  Google Scholar 

  10. J Zhu, L Q Chen, J Shen and V Tikare, Phys. Rev. E 60, 4 (1999)

    Article  Google Scholar 

  11. V V Ginzburg, F Qiu, M Paniconi, G Peng, D Jasnow and A C Balazs, Phys. Rev. Lett. 82, 20 (1999)

    Article  Google Scholar 

  12. V V Ginzburg, G Peng, F Qiu, D Jasnow and A C Balazs, Phys. Rev. E 60, 4 (1999)

    Google Scholar 

  13. A C Balazs, V V Ginzburg, F Qiu, G Peng and D Jasnow, J. Phys. Chem. B 104, 15 (2000)

    Article  Google Scholar 

  14. S Ghosh, A Mukherjee, T A Abinandanan and S Bose, Phys. Chem. Chem. Phys. 19, 23 (2017)

    Google Scholar 

  15. H Tanaka, A J Lovinger and D D Davis, Phys. Rev. Lett.  72, 16 (1994)

    Google Scholar 

  16. H Tanaka, J. Phys.: Condens. Matter  13, 21 (2001)

    Google Scholar 

  17. T Araki and H Tanaka, Phys. Rev. E  73, 6 (2006)

    Article  Google Scholar 

  18. M Laradji, J. Chem. Phys.  120, 19 (2004)

    Article  Google Scholar 

  19. M Laradji and G MacNevin, J. Chem. Phys.  119, 4 (2003)

    Article  Google Scholar 

  20. J W Cahn and J E Hilliard, J. Chem. Phys.  28, 2 (1958)

    Article  Google Scholar 

  21. J W Cahn and J E Hilliard, J. Chem. Phys.  31, 3 (1959)

    Article  Google Scholar 

  22. E Huston, J W Cahn and J Hilliard, Acta Metall.  14, 9 (1966)

    Article  Google Scholar 

  23. J Manafian, M Lakestani and A Bekir, Pramana – J. Phys. 87, 6 (2016)

    Article  Google Scholar 

  24. L Q Chen and J Shen, Comput. Phys. Commun.  108, 2 (1998)

    Article  Google Scholar 

  25. Y He, Y Liu and T Tang, Appl. Numer. Math.  57, 5 (2007)

    Article  Google Scholar 

  26. V V Ginzburg, C Gibbons, F Qiu, G W Peng and A C Balazs, Macromolecules 33, 16 (2000)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 51472015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Wenjun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guangjin, L., Wenjun, X., Lanzhou, L. et al. Phase separation dynamics in binary systems containing mobile particles with variable Brownian motion. Pramana - J Phys 91, 55 (2018). https://doi.org/10.1007/s12043-018-1625-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1625-y

Keywords

PACS Nos

Navigation