Skip to main content
Log in

Bound state solutions to the Schrödinger equation for some diatomic molecules

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The bound state solutions to the radial Schrödinger equation are obtained in three-dimensional space using the series expansion method within the framework of a general interaction potential. The energy eigenvalues of the pseudoharmonic and Kratzer potentials are given as special cases. The obtained analytical results are applied to several diatomic molecules, i.e. \(\mathrm {N}_2, \mathrm {CO}, \mathrm {NO}\) and \(\mathrm {CH}\). In order to check the accuracy of the present method, a comparison is made with similar results obtained in the literature by using other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S H Dong and Z Q Ma, J. Phys. A: Math. Gen. 31, 9855 (1998)

    Article  ADS  Google Scholar 

  2. M S Child, S H Dong and X G Wang, J. Phys. A: Math. Gen. 33, 5653 (2000)

    Article  ADS  Google Scholar 

  3. H Panahi and M M Gavabar, Pramana – J. Phys. 86(5), 985 (2016)

    Article  ADS  Google Scholar 

  4. S H Dong and Z Q Ma, Int. J. Mod. Phys. E 11(2), 155 (2002)

    Article  ADS  Google Scholar 

  5. S H Dong, Appl. Math. Lett. 16, 199 (2003)

    Article  MathSciNet  Google Scholar 

  6. L Y Wang, X-Y Gu, Z Q Ma and S H Dong, Found. Phys. Lett. 15(6), 569 (2002)

    Article  MathSciNet  Google Scholar 

  7. W C Qiang and S H Dong, Phys. Lett. A 363, 169 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. H Sun, Phys. Lett. A 338, 309 (2005)

    Article  ADS  Google Scholar 

  9. O Bayrak, I Boztosun and H Ciftci, Int. J. Quant. Chem. 107, 540 (2007)

    Article  ADS  Google Scholar 

  10. R Sever, M Bucurgat, C Tezcan and O Yesiltas, J. Math. Chem. 43(2), 749 (2008)

    Article  MathSciNet  Google Scholar 

  11. R Sever, C Tezcan, M Aktas and O Yesiltas, J. Math. Chem. 43(2), 845 (2008)

    Article  MathSciNet  Google Scholar 

  12. K J Oyewumi, F O Akinpelu and A D Agboola, Int. J. Theor. Phys. 47, 1039 (2008)

    Article  Google Scholar 

  13. C Berkdemir, A Berkdemir and J Han, Chem. Phys. Lett. 417, 326 (2006)

    Article  ADS  Google Scholar 

  14. A Arda and R Sever, J. Math. Chem. 50, 971 (2012)

    Article  MathSciNet  Google Scholar 

  15. S M Ikhdair and R Sever, Cent. Eur. J. Phys. 6(3), 697 (2008)

    Google Scholar 

  16. S M Ikhdair and R Sever, J. Mol. Struct. Theochem 806, 155 (2007)

    Article  Google Scholar 

  17. K J Oyewumi and K D Sen, J. Math. Chem. 50, 1039 (2012)

    Article  MathSciNet  Google Scholar 

  18. B J Falaye, K J Oyewumi, F Sadikoglu, M Hamzavi and S M Ikhdair, J. Theor. Comput. Chem. 14(5), 1550036 (2015)

    Article  Google Scholar 

  19. A N Ikot, E O Chukwuocha, M C Onyeaju, C A Onate, B I Ita and M E Udoh, Pramana – J. Phys. 90: 22 (2018)

    Article  ADS  Google Scholar 

  20. R Rani and F Chand, Ind. J. Phys. 92, 145 (2018)

    Article  Google Scholar 

  21. R Rani, S B Bhardwaj and F Chand, Commun. Theor. Phys. 70(2), 179 (2018)

    Article  ADS  Google Scholar 

  22. S M Ikhdair, B J Falaye and M Hamzavi, Ann. Phys. 353, 282 (2015)

    Article  ADS  Google Scholar 

  23. R Kumar and F Chand, Phys. Scr. 85, 055008 (2012)

    Article  ADS  Google Scholar 

  24. R Rani and F Chand, Appl. Sci. Lett. 2(4), 129 (2016)

    Google Scholar 

  25. R Kumar and F Chand, Commun. Theor. Phys. 59, 528 (2013)

    Article  Google Scholar 

  26. R Kumar and F Chand, Pramana – J. Phys. 83(1), 39 (2014)

    Article  ADS  Google Scholar 

  27. G Liu, K Guo, H Hassanabadi, L Lu and B H Yazarloo, Physica B 415, 92 (2013)

    Article  ADS  Google Scholar 

  28. R Khordad, Superlatt. Microstruct. 62, 166(2013)

    Article  ADS  Google Scholar 

  29. A Cetin, Phys. Lett. A 372, 3852 (2008)

    Article  ADS  Google Scholar 

  30. S M Ikhdair and M Hamzavi, Physica B 407, 4198 (2012)

    Article  ADS  Google Scholar 

  31. Y F Cheng and T Q Dai, Phys. Scr. 75, 274 (2007)

    Article  MathSciNet  Google Scholar 

  32. D B Hayrapetyan, E M Kazaryan, L S Petrosyan and H A Sarkisyan, Physica E 66, 7 (2015)

    Article  ADS  Google Scholar 

  33. R Khordad, Ind. J. Phys. 87(7), 623 (2013)

    Article  Google Scholar 

  34. M Aygun, O Bayrak, I Boztosun and Y Sahin, Eur. Phys. J. D 66(35), 1 (2012)

    Google Scholar 

Download references

Acknowledgements

Richa Rani acknowledges the University Grants Commission (UGC), New Delhi (India) for granting financial support through the UGC-BSR fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakir Chand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, R., Bhardwaj, S.B. & Chand, F. Bound state solutions to the Schrödinger equation for some diatomic molecules. Pramana - J Phys 91, 46 (2018). https://doi.org/10.1007/s12043-018-1622-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1622-1

Keywords

PACS Nos

Navigation