Skip to main content
Log in

Cross-like terahertz metamaterial absorber for sensing applications

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this work, a new multiband terahertz metamaterial absorber is designed and characterised by numerical simulation method. In addition, the utilisation of the proposed absorber as a sensor is also investigated. The dielectric and thickness sensing characteristics are analysed. The proposed multiband metamaterial absorber has the ability for utilising the terahertz region up to 2 THz. According to the results, it is found that the proposed absorber is capable of sensing unknown materials and material thickness with any of its five absorption bands. The sensitivity of the proposed sensor is 6.57 GHz / unit sensitivity for dielectric sensing and \(7.66\hbox { GHz}/{\mu }\hbox {m}\) for thickness sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R W Ziolkowski, IEEE T. Antenn. Propag. 5, 1516 (2003)

    Article  Google Scholar 

  2. N Engheta and R W Ziolkowski, IEEE T. Microw. Theory 53, 1535 (2005)

    Google Scholar 

  3. J Valentine, S Zhang, T Zentgraf, E Ulin-Avila, D A Genov, G Bartal and X Zhang, Nature 455, 376 (2008), https://doi.org/10.1038/nature07247

    Article  ADS  Google Scholar 

  4. C M Watts, X Liu and W J Padilla, Adv. Mater. 24, OP98 (2012)

    Google Scholar 

  5. D Schurig, J J Mock, B J Justice, S A Cummer, J B Pendry, A F Starr and D R Smith, Science 314, 977 (2006)

    Article  ADS  Google Scholar 

  6. W Li, X Zhou, Y Ying, X Qiao, F Qin, Q Li and S Che, AIP Adv. 5, 067151 (2015)

    Article  ADS  Google Scholar 

  7. F Dincer, M Karaaslan, E Unal, K Delihacioglu and C Sabah, Prog. Electromagn. Res. 144, 123 (2014)

    Article  Google Scholar 

  8. B Mulla and C Sabah, Waves Random. Complex. 25, 382 (2015), https://doi.org/10.1080/17455030.2015.1042091

    Article  ADS  Google Scholar 

  9. B Mulla and C Sabah, Plasmonics 11, 1313 (2016), https://doi.org/10.1007/s11468-015-0177-y

    Article  Google Scholar 

  10. X He, S Yan, Q Ma, Q Zhang, P Jia, F Wu and J Jiang, Opt. Commun. 340, 44 (2015)

    Article  ADS  Google Scholar 

  11. B Wang, X Zhai, G Wang, W Huang and L Wang, Opt. Mater. Express 5, 227 (2015)

    Article  ADS  Google Scholar 

  12. Wei Su and Bingyan Chen, Pramana – J. Phys. 89, 37 (2017), https://doi.org/10.1007/s12043-017-1436-6

    Article  ADS  Google Scholar 

  13. X Liu, T Tyler, T Starr, A F Starr, N M Jokerst and W J Padilla, Phys. Rev. Lett. 107, 045901-1-4 (2011)

  14. S Gu, J P Barrett, T H Hand, B-I Popa and S A Cummer, J. Appl. Phys. 108, 064913-1-6 (2010)

  15. A Díaz-Rubio, A P Hibbins, J Carbonell and J Sánchez-Dehesa, Appl. Phys. Lett. 106, 241604 (2015)

    Article  ADS  Google Scholar 

  16. J B Pendry, D Schurig and D R Smith, Science 312, 1780 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. W Cai, D A Genov and V M Shalaev, Phys. Rev. B 72, 193101 (2005)

    Article  ADS  Google Scholar 

  18. N I Landy, S Sajuyigbe, J J Mock, D R Smith and W J Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  19. Xunjun He, Qinfei Zhang, Guangjun Lu, Guobing Ying, Fengmin Wu and Jiuxing Jiang, RSC Adv. 6, 52212 (2016)

    Article  Google Scholar 

  20. C Sabah and H G Roskos, Microsyst. Technol. 18, 2071 (2012)

    Article  Google Scholar 

  21. L Cong, Siyu Tan, Riad Yahiaoui, Fengping Yan, Weili Zhang and Ranjan Singh, Appl. Phys. Lett. 106, 031107 (2015)

    Article  ADS  Google Scholar 

  22. Cumali Sabah and Hartmut G Roskos, Eur. Phys. J. Appl. Phys. 61, 30402 (2013)

    Article  ADS  Google Scholar 

  23. Ben-Xin Wang, Ling-Ling Wang, Gui-Zhen Wang, Wei-Qing Huang, Xiao-Fei Li and Xiang Zhai, IEEE Photon. Technol. Lett. 26(2), 111 (2014)

    Article  ADS  Google Scholar 

  24. Ben-Xin Wang, Gui-Zhen Wang and Ling-Ling Wang, Plasmonics 11, 523 (2016), https://doi.org/10.1007/s11468-015-0076-2

    Article  Google Scholar 

  25. Hu Tao, C M Bingham, D Pilon, Kebin Fan, A C Strikwerda, D Shrekenhamer, W J Padilla, Xin Zhang and R D Averitt, J. Phys. D: Appl. Phys. 43, 225102 (2010)

    Article  ADS  Google Scholar 

  26. Y Ra’di, C R Simovski and S A Tretyakov, Phys. Rev. Appl. 3, 037001 (2015)

    Article  ADS  Google Scholar 

  27. B X Wang, X Zhai, G Z Wang, W Q Huang and L L Wang, IEEE Photon. J. 115, 1(2015)

    Google Scholar 

  28. D Hu, H Y Wang and Q F Zhu, IEEE Photon. J. 8, 5500608 (2016)

    Google Scholar 

  29. G Dayal and S A Ramakrishna, J. Opt. 16, 094016 (2014)

    Article  ADS  Google Scholar 

  30. B X Wang, IEEE J. Sel. Top. Quantum Electron. 23, 4700107 (2017)

    Google Scholar 

  31. Yong Zhi Cheng, Mu Lin Huang, Hao Ran Chen, Zhen Zhong Guo, Xue Song Mao and Rong Zhou Gong, https://doi.org/10.20944/preprints201703.0022.v1

Download references

Acknowledgements

The study reported here was carried out at Middle East Technical University-Northern Cyprus Campus (METU-NCC). It is supported by METU-NCC under the grant numbers of BAP-FEN-15-D-3 and BAP-FEN-16-K-8; and partially supported by TUBITAK (Scientific and Technical Research Council of Turkey) under the project number of 114F091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cumali Sabah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabah, C., Mulla, B., Altan, H. et al. Cross-like terahertz metamaterial absorber for sensing applications. Pramana - J Phys 91, 17 (2018). https://doi.org/10.1007/s12043-018-1591-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1591-4

Keywords

PACS Nos

Navigation