Advertisement

Pramana

, 90:46 | Cite as

Neutron radiation damage studies in the structural materials of a 500 MWe fast breeder reactor using DPA cross-sections from ENDF / B-VII.1

  • Uttiyoarnab Saha
  • K Devan
  • Abhitab Bachchan
  • G Pandikumar
  • S Ganesan
Article

Abstract

The radiation damage in the structural materials of a 500 MWe Indian prototype fast breeder reactor (PFBR) is re-assessed by computing the neutron displacement per atom (dpa) cross-sections from the recent nuclear data library evaluated by the USA, ENDF / B-VII.1, wherein revisions were taken place in the new evaluations of basic nuclear data because of using the state-of-the-art neutron cross-section experiments, nuclear model-based predictions and modern data evaluation techniques. An indigenous computer code, computation of radiation damage (CRaD), is developed at our centre to compute primary-knock-on atom (PKA) spectra and displacement cross-sections of materials both in point-wise and any chosen group structure from the evaluated nuclear data libraries. The new radiation damage model, athermal recombination-corrected displacement per atom (arc-dpa), developed based on molecular dynamics simulations is also incorporated in our study. This work is the result of our earlier initiatives to overcome some of the limitations experienced while using codes like RECOIL, SPECTER and NJOY 2016, to estimate radiation damage. Agreement of CRaD results with other codes and ASTM standard for Fe dpa cross-section is found good. The present estimate of total dpa in D-9 steel of PFBR necessitates renormalisation of experimental correlations of dpa and radiation damage to ensure consistency of damage prediction with ENDF / B-VII.1 library.

Keywords

Primary-knock-on atom spectra displacement per atom displacement per atom cross-section computation of radiation damage molecular dynamics simulation renormalisation 

PACS Nos

28.41.−i 28.41.Ak 28.41.Qb 28.50.Ft 

Notes

Acknowledgements

The authors gratefully acknowledge Dr V Gopalakrishnan, former Head, Nuclear Data Section, Reactor Design Group, IGCAR, for his keen interest and the initiatives made for developing an Indian radiation damage code for fast reactor applications. His guidance and encouragement for this work are also acknowledged.

References

  1. 1.
    F Seitz, Discuss. Faraday Soc. 5, 271 (1949)CrossRefGoogle Scholar
  2. 2.
    W S Snyder and J Neufeld, Phys. Rev. 97, 1636 (1955)ADSCrossRefGoogle Scholar
  3. 3.
    F A Garner, Comprehens. Nucl. Mater. 4, 33 (2012)CrossRefGoogle Scholar
  4. 4.
    L R Greenwood, J. Nucl. Mater. 216, 29 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    Gary S Was, Fundamentals of radiation materials science (Springer, New York, 2007)Google Scholar
  6. 6.
    L I Ivanov and Yu M Platov, Radiation physics of metals and its applications (Cambridge International Science Publishing, 2004) pp. 5–11Google Scholar
  7. 7.
    M J Norgett, M T Robinson and I M Torrens, Nucl. Eng. Des. 33, 50 (1975)CrossRefGoogle Scholar
  8. 8.
    M T Robinson and I M Torrens, Phys. Rev. B 9, 5008 (1974)ADSCrossRefGoogle Scholar
  9. 9.
    J Lindhard, V Nielsen, M Scharff and P V Thomsen, Mat. Fys. Medd. Dan. Vid. Selsk. 33(10) (1963)Google Scholar
  10. 10.
    J Lindhard, M Scharff and H E Schiøtt, Mat. Fys. Medd. Dan. Vid. Selsk. 33(14), 1 (1963)Google Scholar
  11. 11.
    G H Kinchin and R S Pease, Rep. Prog. Phys. 18(1), 1 (1955)ADSCrossRefGoogle Scholar
  12. 12.
    D J Bacon, F Gao and Yu N Osetsky, Nucl. Instrum. Methods 153, 87 (1999)CrossRefGoogle Scholar
  13. 13.
    R S Averback, R Benedek and K L Merkle, Phys. Rev. B 18, 4156 (1978)ADSCrossRefGoogle Scholar
  14. 14.
    J H Kinney, M W Guinan and Z A Munir, J. Nucl. Mater. 122–123, 1028 (1984)CrossRefGoogle Scholar
  15. 15.
    P Jung, J. Nucl. Mater. 117, 70 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    Kai Nordlund et al, Primary radiation damage in materials, Report Nuclear Science NEA\(/\)NSC\(/\)DOC (2015) 9, OECD/NEA, 2015Google Scholar
  17. 17.
    R E Stoller, L R Greenwood and S P Simakov, Primary radiation damage cross sections, Report INDC (NDS)-0691 (IAEA Headquarters, Vienna, Austria, 2015)Google Scholar
  18. 18.
    T A Gabriel, J D Amburgey and N M Greene, Radiation damage calculations: Primary recoil spectra, displacement rates, and gas production rates, Report ORNL\(/\)TM-5160 (Oak Ridge National Laboratory, 1976)Google Scholar
  19. 19.
    L R Greenwood and R K Smither, SPECTER: Neutron damage calculations for materials irradiations, Report ANL\(/\)FPP\(/\)TM-197 (Argonne National Laboratory, 1985)Google Scholar
  20. 20.
    M B Chadwick et al, Nuclear Data Sheets 112, 2887 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    A C Kahler, The NJOY nuclear data processing system, Version 2016, Report LA-UR-17-20093 (Los Alamos National Laboratory, 2016)Google Scholar
  22. 22.
    R S Averback and K L Merkle, Phys. Rev. B 16, 3860 (1977)ADSCrossRefGoogle Scholar
  23. 23.
    L Malerba, J. Nucl. Mater. 351, 28 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    J D Jenkins, Nucl. Sci. Eng. 41, 155 (1970)CrossRefGoogle Scholar
  25. 25.
    W Sheely, Nucl. Sci. Eng. 29, 165 (1967)CrossRefGoogle Scholar
  26. 26.
    Uttiyoarnab Saha and K Devan, Proceedings of the DAE-BRNS Symp. on Nucl. Phys. (2016) Vol. 61, pp. 644–645Google Scholar
  27. 27.
    ASTM E693-12, Standard practice for charactersing neutron exposures in iron and low alloy steels in terms of displacements per atom (DPA), E 706 (ID)Google Scholar
  28. 28.
    P Puthiyavinayagam et al, Development of fast breeder reactor technology in India, progress in nuclear energy (2017),  https://doi.org/10.1016/j.pnucene.2017.03.015
  29. 29.
  30. 30.
    P Satyamurthy, L M Gantayet and A K Ray, Pramana – J. Phys. 68, 343 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    S Ganesan, Pramana – J. Phys. 68, 257 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    A Bouhaddane et al, J. Phys.: Conf. Ser. 516, 012024 (2014)CrossRefGoogle Scholar
  33. 33.
    V Kumar, Harphool Kumawat and Manish Sharma, Pramana – J. Phys. 68, 315 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    ENDF-6 Formats Manual, CSEWG Document ENDF-102, Report BNL-90365-2009 Rev.1Google Scholar
  35. 35.
    Junhyun Kwon, Yong Hee Choi and Gyeong-Geun Lee, 2nd Research coordination meeting on primary radiation damage cross-Section (Vienna, Austria, June 29–July 2, 2015)Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Reactor Neutronics Division, Reactor Design GroupIndira Gandhi Centre for Atomic Research, Homi Bhabha National InstitueKalpakkamIndia
  2. 2.Bhabha Atomic Research CentreMumbaiIndia

Personalised recommendations