Skip to main content
Log in

Rogue waves in the multicomponent Mel’nikov system and multicomponent Schrödinger–Boussinesq system

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

By virtue of the bilinear method and the KP hierarchy reduction technique, exact explicit rational solutions of the multicomponent Mel’nikov equation and the multicomponent Schrödinger–Boussinesq equation are constructed, which contain multicomponent short waves and single-component long wave. For the multicomponent Mel’nikov equation, the fundamental rational solutions possess two different behaviours: lump and rogue wave. It is shown that the fundamental (simplest) rogue waves are line localised waves which arise from the constant background with a line profile and then disappear into the constant background again. The fundamental line rogue waves can be classified into three: bright, intermediate and dark line rogue waves. Two subclasses of non-fundamental rogue waves, i.e., multirogue waves and higher-order rogue waves are discussed. The multirogue waves describe interaction of several fundamental line rogue waves, in which interesting wave patterns appear in the intermediate time. Higher-order rogue waves exhibit dynamic behaviours that the wave structures start from lump and then retreat back to it. Moreover, by taking the parameter constraints further, general higher-order rogue wave solutions for the multicomponent Schrödinger–Boussinesq system are generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K Dysthe, H E Krogstad and P Müller, Annu. Rev. Fluid Mech. 40, 287 (2008)

    Article  ADS  Google Scholar 

  2. D R Solli, C Ropers, P Koonath and B Jalali, Nature 450, 1054 (2007)

    Article  ADS  Google Scholar 

  3. B Kibler, J Fatome, C Finot, G Millot, F Dias, F Genty, N Akhmediev and J M Dudley, Nat. Phys.  6, 790 (2010)

    Article  Google Scholar 

  4. Y V Bludov, V V Konotop and N Akhmediev, Phys. Rev. A 80, 033610 (2009)

    Article  ADS  Google Scholar 

  5. H Bailung, S K Sharma and Y Nakamura, Phys. Rev. Lett. 107, 255005 (2011)

    Article  ADS  Google Scholar 

  6. M Shats, H Punzmann and H Xia, Phys. Rev. Lett. 104, 104503 (2010)

    Article  ADS  Google Scholar 

  7. M Onorato, S Residori, U Bortolozzo, A Montina and F T Arecchi, Phys. Rep.  528, 47 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. A Chabchoub, N P Hoffmann and N Akhmediev, Phys. Rev. Lett.  106, 204502 (2011)

    Article  ADS  Google Scholar 

  9. A Chabchoub, N Hoffmann, M Onorato and N Akhmediev, Phys. Rev. X  2, 011015 (2012)

    Google Scholar 

  10. N N Akhmediev and V I Korneev, Theor. Math. Phys.  69, 1089 (1986)

    Article  Google Scholar 

  11. V E Zakharov and A I Dyachenko, Eur. J. Mech. B  29, 127 (2010)

    Article  Google Scholar 

  12. N Akhmediev, J M Soto-Crespo and A Ankiewicz, Phys. Rev. A  80, 043818 (2009)

    Article  ADS  Google Scholar 

  13. V E Zakharov and L A Ostrovsky, Physica D  238, 540 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. D H Peregrine, J. Aust. Math. Soc. B  25, 16 (1983)

    Article  MathSciNet  Google Scholar 

  15. N Akhmediev, A Ankiewicz and M Taki, Phys. Lett. A  373, 675 (2009)

    Article  ADS  Google Scholar 

  16. Z X Xu and K W Chow, Appl. Math. Lett. 56, 72 (2016)

    Article  MathSciNet  Google Scholar 

  17. Y Ohta and J Yang, Proc. R. Soc. London Ser. A  468, 1716 (2012)

    Article  ADS  Google Scholar 

  18. Y S Tao and J S He, Phys. Rev. E  85, 026601 (2012)

    Article  ADS  Google Scholar 

  19. G Mu, Z Y Qin and R Grimshaw, SIAM J. Appl. Math.  75, 1 (2015)

    Article  MathSciNet  Google Scholar 

  20. J S He, H R Zhang, L H Wang, K Porsezian and A S Fokas, Phys. Rev. E  87, 052914 (2013)

    Article  ADS  Google Scholar 

  21. L H Wang, K Porsezian and J S He, Phys. Rev. E  87, 053202 (2013)

    Article  ADS  Google Scholar 

  22. Z Y Yan, V V Konotop and N Akhmediev, Phys. Rev. E 82, 036610 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. S Chen and D Mihalache, J. Phys. A: Math. Theor.  48, 215202 (2015)

    Article  ADS  Google Scholar 

  24. X Wang, Y Q Li, F Huang and Y Chen, Commun. Nonlinear Sci. Numer. Simul.  20, 434 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. S H Chen, J M Soto-Crespo, F Baronio, P Grelu and D Mihalache, Opt. Express  24, 15251 (2016)

    Article  ADS  Google Scholar 

  26. F Baronio, S Wabnitz and Y Kodama, Phys. Rev. Lett.  116, 173901 (2016)

    Article  ADS  Google Scholar 

  27. J G Rao, K Porsezian and J S He, Chaos  27, 083115 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. A Ankiewicz and N Akhmediev, Rom. Rep. Phys.  69, 104 (2017)

    Google Scholar 

  29. Y B Liu, A S Fokas, D Mihalache and J S He, Rom. Rep. Phys.  68, 1425 (2016)

    Google Scholar 

  30. F Yuan, J G Rao, K Porsezian, D Mihalache and J S He, Rom. J. Phys.  61, 378 (2016)

    Google Scholar 

  31. S H Chen, P Grelu, D Mihalache and F Baronio, Rom. Rep. Phys.  68, 1407 (2016)

    Google Scholar 

  32. H Chen and W W Chen, Rom. Rep. Phys. 69, 3 (2017)

    Google Scholar 

  33. W Liu, Rom. Rep. Phys. 62, 3 (2017)

    Google Scholar 

  34. Y Ohta and J K Yang, Phys. Rev. E 86, 036604 (2012)

    Article  ADS  Google Scholar 

  35. Y Ohta and J K Yang, J. Phys. A: Math. Theor. 46, 105202 (2013)

    Article  ADS  Google Scholar 

  36. P Dubard and V B Matveev, Nonlinearity  26, 93 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  37. J G Rao, L H Wang, Y Zhang and J S He, Commun. Theor. Phys.  64, 605 (2015)

    Article  ADS  Google Scholar 

  38. Y K Liu and B Li, Pramana – J. Phys. 88, 57 (2017)

    Google Scholar 

  39. H Gao, Pramana – J. Phys.  88, 84 (2017)

    Google Scholar 

  40. N Vishnu, M Senthilvelan and M Lakshmana, Pramana – J. Phys. 84, 339 (2015)

    Article  ADS  Google Scholar 

  41. W Chen, H L Chen and Z D Dai, Pramana – J. Phys. 86, 713 (2016)

    Google Scholar 

  42. D Mihalache, Rom. Rep. Phys. 67, 1383 (2015)

    Google Scholar 

  43. D Mihalache, Rom. Rep. Phys. 69, 403 (2017)

    Google Scholar 

  44. F Baronio, A Degasperis, M Conforti and S Wabnitz, Phys. Rev. Lett.  109, 044102 (2012)

    Article  ADS  Google Scholar 

  45. N Yajima and M Oikawa, Prog. Theor. Phys. 56, 1719 (1976)

    Article  ADS  Google Scholar 

  46. Y Ohta, K Maruno and M Oikawa, J. Phys. A: Math. Gen. 40, 7659 (2017)

    Article  ADS  Google Scholar 

  47. Z Han, Y Chen and J C Chen, J. Phys. Soc. Jpn. 86, 074005 (2017)

    Article  ADS  Google Scholar 

  48. A Hasegawa and Y Kodama, Solitons in optical communications (Clarendon, Oxford, 1995)

    MATH  Google Scholar 

  49. A C Scott, Nonlinear science: Emergence and dynamics of coherent structures (Oxford University Press, Oxford, 1999)

    MATH  Google Scholar 

  50. G P Agrawal, Nonlinear fiber optics (Academic Press, New York, 1995)

    MATH  Google Scholar 

  51. Y S Kivshar and G P Agrawal, Optical solitons: From fibers to photonic crystals (Academic Press, San Diego, 2003)

    Google Scholar 

  52. L Q Kong and C Q Dai, Nonlinear Dyn.  81, 1553 (2015)

    Article  Google Scholar 

  53. B L Guo and L M Ling, Chin. Phys. Lett.  28, 110202 (2011)

    Article  ADS  Google Scholar 

  54. Y V Bludov, V V Konotop and N Akhmediev, Eur. Phys. J. Spec. Top.  185, 169 (2010)

    Article  Google Scholar 

  55. Z Han and Y Chen, Bright–dark mixed N-soliton solutions of the multicomponent Mel’nikov system, arXiv:1706.06881

  56. V K Mel’nikov, Lett. Math. Phys. 7, 129 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  57. V K Mel’nikov, Phys. Lett. A  118, 22 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  58. V K Mel’nikov, J. Math. Phys.  28, 2603 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  59. V K Mel’nikov, Commum. Math. Phys.  112, 639 (1987)

    Article  ADS  Google Scholar 

  60. Y Hase, R Hirota and Y Ohta, J. Phys. Soc. Jpn.  58, 2713 (1989)

    Article  ADS  Google Scholar 

  61. C Senthil Kumar, R Radha and M Lakshmanan, Chaos Solitons Fractals  22, 705 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  62. G Mu and Z Y Qin, Nonlinear Anal. Real World Appl.  18, 1 (2014)

    Article  MathSciNet  Google Scholar 

  63. S V Singh, N N Rao and P K Shukla, J. Plasma Phys.  60, 551 (1998)

    Article  ADS  Google Scholar 

  64. Y Hase and J Satsuma, J. Phys. Soc. Jpn.  57, 679 (1988)

    Article  ADS  Google Scholar 

  65. A R Chowdhury, B Dasgupta and N N Rao, Chaos Solitons Fractals  9, 1747 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  66. X B Hu, B L Guo and H E Tam, J. Phys. Soc. Jpn.  72, 189 (2003)

    Article  ADS  Google Scholar 

  67. G Mu and Z Y Qin, J. Phys. Soc. Jpn.  81, 084001 (2012)

    Article  ADS  Google Scholar 

  68. M Jimbo and T Miwa, Publ. RIMS Kyoto Univ.  19, 943 (1983)

    Article  Google Scholar 

  69. Y Ohta, D Wang and J Yang, Stud. Appl. Math. 127, 345 (2011)

    Article  MathSciNet  Google Scholar 

  70. R Hirota, The direct method in soliton theory (Cambridge University Press, Cambridge, UK, 2004)

    Book  MATH  Google Scholar 

  71. J C Chen, Y Chen, B F Feng and K Maruno, Phys. Lett. A  379, 1510 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  72. Y K Shi, Line rogue waves in the Mel’nikov equation (accepted by Z. Naturforsch A 2017)

  73. J Rao, Y Cheng and J S He, Stud. Appl. Math. 139, 568 (2017)

Download references

Acknowledgements

This work was supported by the Shandong Provincial Natural Science Foundation (Grant No. ZR2015PD009), the National Natural Science Foundation of China (Grant No. 41506037), and the National Key Research and Development Programme of China (Grant Nos 2016YFC1402000, 2016YFC1402304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baonan Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Lian, Z. Rogue waves in the multicomponent Mel’nikov system and multicomponent Schrödinger–Boussinesq system. Pramana - J Phys 90, 23 (2018). https://doi.org/10.1007/s12043-017-1512-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-017-1512-y

Keywords

PACS Nos

Navigation