Skip to main content

Advertisement

Log in

Half-metallic ferromagnetism in \(\text {Ti}_{2}\text {IrZ}\) (Z \(=\) B, Al, Ga, and In) Heusler alloys: A density functional study

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The first-principle density functional theory (DFT) calculations were employed to investigate the electronic structures, magnetic properties and half-metallicity of \(\text {Ti}_{2}\text {IrZ}\) (Z \(=\) B, Al, Ga, and In) Heusler alloys with \(\text {AlCu}_{2}\text {Mn}\)- and \(\text {CuHg}_{2}\text {Ti}\)-type structures within local density approximation and generalised gradient approximation for the exchange correlation potential. It was found that \(\text {CuHg}_{2}\text {Ti}\)-type structure in ferromagnetic state was energetically more favourable than \(\text {AlCu}_{2}\text {Mn}\)-type structure in all compounds except \(\text {Ti}_{2}\text {IrB}\) which was stable in \(\text {AlCu}_{2}\text {Mn}\)-type structure in non-magnetic state. \(\text {Ti}_{2}\text {IrZ}\) (Z \(=\) B, Al, Ga, and In) alloys in \(\text {CuHg}_{2}\text {Ti}\)-type structure were half-metallic ferromagnets at their equilibrium lattice constants. Half-metallic band gaps were respectively equal to 0.87, 0.79, 0.75, and 0.73 eV for \(\text {Ti}_{2}\text {IrB}\), \(\text {Ti}_{2}\text {IrAl}\), \(\text {Ti}_{2}\text {IrGa}\), and \(\text {Ti}_{2}\text {IrIn}\). The origin of half-metallicity was discussed for \(\text {Ti}_{2}\text {IrGa}\) using the energy band structure. The total magnetic moments of \(\text {Ti}_{2}\text {IrZ}\) (Z \(=\) B, Al, Ga, and In) compounds in \(\text {CuHg}_{2}\text {Ti}\)-type structure were obtained as \(2\mu _{\mathrm{B}}\) per formula unit, which were in agreement with Slater–Pauling rule (\(M_{\mathrm{tot}} =Z_{\mathrm{tot}}-\)18). All the four compounds were half-metals in a wide range of lattice constants indicating that they may be suitable and promising materials for future spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S Chadov, T Graf, K Chadova, X Dai, F Casper, G H Fecher and C Felser, Phys. Rev. Lett. 107, 047202 (2011)

    Article  ADS  Google Scholar 

  2. K Yakushi, K Saito, K Takanashi, Y K Takahashi and K Hondo, Appl. Phys. Lett. 88, 082501 (2006)

    Article  Google Scholar 

  3. R A de Groot, F M Mueller, P G van Engen and K H J Buschow, Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  4. Z H Zhu and X H Yan, J. Appl. Phys. 106, 023713 (2009)

    Article  ADS  Google Scholar 

  5. K L Kobayashi, T Kimura, H Sawada, K Terakura and Y Tokura, Nature 395, 677 (1998)

    Article  ADS  Google Scholar 

  6. A Nourmohammadi and M R Abolhasani, Solid State Commun. 150, 1501 (2010)

    Article  ADS  Google Scholar 

  7. W Z Wang and X P Wei, Comput. Mater. Sci. 50, 2253 (2011)

    Article  Google Scholar 

  8. J Dho, S Ki, A F Gubkin, J M S Park and E A Sherstobitov, Solid State Commun. 150, 86 (2010)

    Article  ADS  Google Scholar 

  9. S Soeya, J Hayakawa, H Takahashi, K Ito, C Yamamoto, A Kida, H Asano and M Matsui, Appl. Phys. Lett. 80, 823 (2002)

    Article  ADS  Google Scholar 

  10. L Kronik, M Jain and J R Chelikowsky, Phys. Rev. B 66, 041203R (2002)

    Article  ADS  Google Scholar 

  11. N A Noor, S Ali and A Shaukat, J. Phys. Chem. Solids 72, 836 (2011)

    Article  ADS  Google Scholar 

  12. I Galanakis and P Mavropoulos, Phys. Rev. B 67, 104417 (2003)

    Article  ADS  Google Scholar 

  13. Y-Q Xu, B-G Liu and D G Pettifor, Physica B 329333, 1117 (2003)

    Article  Google Scholar 

  14. K L Yao, G Y Gao, Z L Liu and L Zhu, Solid State Commun. 133 , 301 (2005)

    Article  ADS  Google Scholar 

  15. K L Yao, G Y Gao, Z L Liu, L Zhu and Y L Li, Physica B 366, 62 (2005)

    Article  ADS  Google Scholar 

  16. X-F Ge and Y-M Zhang, J. Magn. Magn. Mater. 321, 198 (2009)

    Article  ADS  Google Scholar 

  17. F Ahmadian, Pramana – J. Phys. 77, 383 (2011)

    Article  ADS  Google Scholar 

  18. S Datta and B Das, Appl. Phys. Lett. 56, 665 (1990)

    Article  ADS  Google Scholar 

  19. K A Kilian and R H Victora, J. Appl. Phys. 87, 7064 (2000)

    Article  ADS  Google Scholar 

  20. C T Tanaka, J Nowak and J S Moodera, J. Appl. Phys. 86, 6239 (1999)

    Article  ADS  Google Scholar 

  21. J A Caballero, Y D Park, J R Childress, J Bass, W-C Chiang, A C Reilly, W P Pratt Jr and F Petroff, J. Vac. Sci. Technol. A 16, 1801 (1998)

    Article  ADS  Google Scholar 

  22. C Hordequin, J P Nozieres and J Pierre, J. Magn. Magn. Mater. 183, 225 (1998)

    Article  ADS  Google Scholar 

  23. P J Webster and K R A Ziebeck, Alloys and compounds of \(d\)-elements with main group elements (Springer, Berlin, 1988) Part 2, pp. 75, 184

  24. S Wurmehl, G H Fecher, H C Kandpal, V Ksenofontov, C Felser, H J Lin and J Morais, Phys. Rev. B 72, 184434 (2005)

    Article  ADS  Google Scholar 

  25. I Galanakis, P Mavropoulos and P H Dederichs, J. Phys. D: Appl. Phys. 39, 765 (2006)

    Article  ADS  Google Scholar 

  26. H C Kandpal, G H Fecher and C Felser, J. Phys. D: Appl. Phys. 40, 1507 (2007)

    Article  ADS  Google Scholar 

  27. X-Q Chen, R Podloucky and P Rogl, J. Appl. Phys. 100, 113901 (2006)

    Article  ADS  Google Scholar 

  28. K Özdoğan, I Galanakis, E Şasıoğlu and B Aktaş, Solid State Commun. 142, 492 (2007)

    Article  ADS  Google Scholar 

  29. G D Liu, X F Dai, H Y Lui, J L Chen, Y X Li, G Xiao and G H Wu, Phys. Rev. B 77, 14424 (2008)

    Article  ADS  Google Scholar 

  30. K Özdoğan and I Galanakis, J. Magn. Magn. Mater. 321, L34 (2009)

    Article  Google Scholar 

  31. V Sharma, A K Solanki and A Kashyap, J. Magn. Magn. Mater. 322, 2922 (2010)

    Article  ADS  Google Scholar 

  32. H Mori, Y Odahara, D Shigyo, T Yoshitake and E Miyoshi, Thin Solid Films 520, 4979 (2012)

    Article  ADS  Google Scholar 

  33. G D Liu, X F Dai, H Y Liu, J L Chen and Y X Li, Phys. Rev. B 77, 014424 (2008)

    Article  ADS  Google Scholar 

  34. H Z Luo, Z Z Zhu, L Ma, S F Xu, H Y Liu and G H Wu, J. Phys. D: Appl. Phys. 40, 7121 (2007)

    Article  ADS  Google Scholar 

  35. I Galanakis, K Özdoğan, E Şasıoğlu and B Aktaş, Phys. Rev. B 75, 172405 (2007)

    Article  ADS  Google Scholar 

  36. J Li, Y X Li, G X Zhou, Y B Sun and C Q Sun, Appl. Phys. Lett. 94, 242502 (2009)

    Article  ADS  Google Scholar 

  37. N Xing, Y Gong, W Zhang, J Dong and H Li, Comput. Mater. Sci. 45, 489 (2009)

    Article  Google Scholar 

  38. X-P Wei, J-B Deng, Ge-Y Mao, S-B Chu and X-R Hu, Intermetallics 29, 86 (2012)

    Article  Google Scholar 

  39. F Ahmadian and R Alinajimi, Comput. Mater. Sci. 79, 345 (2013)

    Article  Google Scholar 

  40. T Roy and A Chakrabarti, Pramana – J. Phys. 89, 6 (2017)

    Article  ADS  Google Scholar 

  41. S Galehgirian and F Ahmadian, Solid State Commun. 202, 52 (2015)

    Article  ADS  Google Scholar 

  42. H Y Jia, X F Dai, L Y Wang, R Liu, X T Wang, P P Li, Y T Cui and G D Liu, J. Magn. Magn. Mater. 367, 33 (2014)

    Article  ADS  Google Scholar 

  43. L Wang and Y Jin, J. Magn. Magn. Mater. 385, 55 (2015)

    Article  ADS  Google Scholar 

  44. M K Hussain, G Y Gao and K Yao, J. Supercond. Novel Magn. 28, 3285 (2015)

    Article  Google Scholar 

  45. Q Fang, J Zhang and K Xu, J. Magn. Magn. Mater. 349, 104 (2014)

    Article  ADS  Google Scholar 

  46. L Zhang, L Y Wang, J J Lu, X T Wang and L Wang, J. Korean Phys. Soc. 65, 2058 (2015)

    Article  Google Scholar 

  47. M Liping, S Yongfan and H Yu, J. Magn. Magn. Mater. 369, 205 (2014)

    Article  ADS  Google Scholar 

  48. N Kervan and S Kervan, J. Phys. Chem. Solids 72, 1358 (2011)

    Article  ADS  Google Scholar 

  49. X Wei, G Mao, S Chu, H Deng, J Deng and X Hu, J. Magn. Magn. Mater. 341, 122 (2013)

    Article  ADS  Google Scholar 

  50. F Ahmadian, J. Korean Phys. Soc. 64, 277 (2014)

    Article  ADS  Google Scholar 

  51. A Birsan and P Palade, Intermetallics 36, 86 (2013)

    Article  Google Scholar 

  52. H M Huang, S J Luo and K L Yao, J. Magn. Magn. Mater. 324, 2560 (2012)

    Article  ADS  Google Scholar 

  53. E Bayar, N Kervan and S Kervan, J. Magn. Magn. Mater. 323, 2945 (2011)

    Article  ADS  Google Scholar 

  54. S Kervan and N Kervan, Solid State Commun. 151, 1162 (2011)

    Article  ADS  Google Scholar 

  55. Y Feng, B Wu, H Yuan, A Kuang and H Chen, J. Alloys Compd. 557, 202 (2013)

    Article  ADS  Google Scholar 

  56. N Kervan and S Kervan, J. Magn. Magn. Mater. 324, 645 (2012)

    Article  ADS  Google Scholar 

  57. A Birsan, P Palade and V Kuncser, J. Magn. Magn. Mater. 331, 109 (2013)

    Article  ADS  Google Scholar 

  58. A Birsan, P Palade and V Kuncser, Solid State Commun. 152, 2147 (2012)

    Article  ADS  Google Scholar 

  59. F Ahmadian, J. Alloys Compd. 576, 279 (2013)

    Article  Google Scholar 

  60. F Taşkın, M Atiş, O Canko, S Kervan and N Kervan, J. Magn. Magn. Mater. 426, 473 (2017)

    Article  ADS  Google Scholar 

  61. P Blaha, K Schwarz, G K H Madsen, D Hvasnicka and J Luitz, WIEN2k, an augmented plane wave local orbitals program for calculating crystal properties, Austria, Karlheinz Schwarz, Technische Universit Wien, ISBN 3-9501031-1-2; 2001

  62. J P Perdew and A Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  63. J Perdew, K Burke and M Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  64. F D Murnaghan, Proc. Natl Acad. Sci. USA 30, 244 (1947)

    Article  ADS  Google Scholar 

  65. S Skaftouros, K Özdoğan, E Şasioğlu and I Galanakis, Phys. Rev. B 87, 024420 (2013)

    Article  ADS  Google Scholar 

  66. K Özdoğan, I Galanakis, E Şaşioğlu and B Aktaş, J. Phys.: Condens. Matter 18, 2905 (2006)

    ADS  Google Scholar 

  67. Z Y Deng and J M Zhang, J. Magn. Magn. Mater. 397, 120 (2016)

    Article  ADS  Google Scholar 

  68. Y Hu and J-M Zhang, J. Magn. Magn. Mater. 421, 1 (2017)

    Article  ADS  Google Scholar 

  69. Semiconductors: Physics of group IV elements and III–V compounds, Landolt–Börnstein, new series, group III edited by O Madelung (Springer-Verlag, Berlin, 1982) Vol. 17, Pt. a

  70. Semiconductors: Intrinsic properties of group IV elements and III–V, II–VI and I–VIII compounds, Landolt–Börnstein, new series, group III edited by O Madelung (Springer-Verlag, Berlin, 1986) Vol. 22, Pt. a

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Ahmadian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, K.H., Ahmadian, F. Half-metallic ferromagnetism in \(\text {Ti}_{2}\text {IrZ}\) (Z \(=\) B, Al, Ga, and In) Heusler alloys: A density functional study. Pramana - J Phys 90, 16 (2018). https://doi.org/10.1007/s12043-017-1508-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-017-1508-7

Keywords

PACS Nos

Navigation