Skip to main content
Log in

Algebraic resolution of the Burgers equation with a forcing term

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We introduce an inhomogeneous term, f(t,x), into the right-hand side of the usual Burgers equation and examine the resulting equation for those functions which admit at least one Lie point symmetry. For those functions f(t,x) which depend nontrivially on both t and x, we find that there is just one symmetry. If f is a function of only x, there are three symmetries with the algebra s l(2,R). When f is a function of only t, there are five symmetries with the algebra s l(2,R) ⊕ s 2A 1. In all the cases, the Burgers equation is reduced to the equation for a linear oscillator with nonconstant coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D Julian et al, Cole Quart. Appl. Math. 9(3), 225 (1951)

    Article  Google Scholar 

  2. Eberhard Hopf, Commun. Pure Appl. Math. 3(3), 201 (1950)

    Article  Google Scholar 

  3. A R Forsyth Theory of Differential Equations...: (vol. V–VI) Partial differential equations. 1906. Theory of Differential Equations. University Press (1902)

  4. Harry Bateman, Mon. Weather Rev. 43(4), 163 (1915)

    Article  ADS  Google Scholar 

  5. Johannes Martinus Burgers, Adv. Appl. Mech. 1, 171 (1948)

    Article  Google Scholar 

  6. M J Ablowitz and S De Lillo, Phys. Lett. A 156(9), 483 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. M J Ablowitz and S De Lillo, Physica D 92(3), 245 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  8. Jérémie Bec and Konstantin Khanin, J. Stat. Phys. 113(5), 741 (2003)

    Google Scholar 

  9. Alexei Chekhlov and Victor Yakhot, Phys. Rev. E 51(4), R2739 (1995)

    Article  ADS  Google Scholar 

  10. Simon Hood, J. Math. Phys. 36(4), 1971 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  11. C H Su and C S Gardner, J. Math. Phys. 10(3), 536 (1969)

    Article  ADS  Google Scholar 

  12. M B Vinogradova, O V Rudenko, and A P Sukhorukov Wave theory (Izd. Nauka, Moscow, 1979)

  13. G B Whitham, Linear and nonlinear waves (John Wiley & Sons Inc., New York, 1974)

    MATH  Google Scholar 

  14. J M Burgers, The nonlinear diffusion equation. Asymptotic solutions and statistical problems (D Reidel, Dordrecht, 1974)

    Book  MATH  Google Scholar 

  15. F Calogero and S De Lillo, Nonlinearity 2(1), 37 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  16. G Blatter, M V Feigel’Man, V B Geshkenbein, A I Larkin, and V M Vinokur, Rev. Mod. Phys. 66(4), 1125 (1994)

    Article  ADS  Google Scholar 

  17. M V Feigel’Man, Sov. J. Exp. Theor. Phys. 52, 555 (1980)

    ADS  Google Scholar 

  18. M Kardar, G Parisi, and Y -C Zhang, Phys. Rev. Lett. 56(9), 889 (1986)

    Article  ADS  Google Scholar 

  19. Leon Balents, Jean-Philippe Bouchaud, and Marc Mézard, J. de Phys. I 6(8), 1007 (1996)

    Google Scholar 

  20. R Vergne, J C Cotillard, and J L Porteseil, Revue de Physique Appliquée 16(9), 449 (1981)

    Article  Google Scholar 

  21. Albert-László Barabási, Comput. Mater. Sci. 6(2), 127 (1996)

    Article  Google Scholar 

  22. Sergei Nikolayevich Gurbatov, A I Saichev, and S F Shandarin, Mon. Not. R. Astron. Soc. 236(2), 385 (1989)

    Article  ADS  Google Scholar 

  23. S F Shandarin and Ya B Zeldovich, Rev. Mod. Phys. 61(2), 185 (1989)

    Article  ADS  Google Scholar 

  24. L Bertini, N Cancrini, and G Jona-Lasinio, Commun. Math. Phys. 165(2), 211 (1994)

    Article  ADS  Google Scholar 

  25. U Frisch and J Bec Burgulence, in: New trends in turbulence: Turbulence, nouveaux aspects (Springer, 2001) pp. 341–383

  26. Jérémie Bec and Konstantin Khanin, Phys. Rep. 447(1), 1 (2007)

    ADS  MathSciNet  Google Scholar 

  27. Yuri Kifer, Prob. Theory Related Fields 108(1), 29 (1997)

    Article  Google Scholar 

  28. Alexander M Polyakov, Phys. Rev. E 52(6), 6183 (1995)

    Article  MathSciNet  Google Scholar 

  29. Toshiyuki Gotoh and Robert H Kraichnan, Phys. Fluids A 5(2), 445 (1993)

    Article  MathSciNet  Google Scholar 

  30. Victor Gurarie and Alexander Migdal, Phys. Rev. E 54(5), 4908 (1996)

    Article  ADS  Google Scholar 

  31. Jean-Philippe Bouchaud, Marc Mézard, and Giorgio Parisi, Phys. Rev. E 52(4), 3656 (1995)

    Article  MathSciNet  Google Scholar 

  32. Yi-Tian Gao, Xiao-Ge Xu, and Tian Bo, Int. J. Mod. Phys. C 14(9), 1207 (2003)

    Article  ADS  Google Scholar 

  33. A Balogh, D S Gilliam, and Victor I Shubov, Math. Comput. Model. 33(1), 21 (2001)

    Article  Google Scholar 

  34. K Andriopoulos, S Dimas, P G L Leach, and D Tsoubelis, J. Comput. Appl. Math. 230(1), 224 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. S Dimas Partial differential equations, algebraic computing and nonlinear systems Ph.D. thesis (University of Patras, Greece, 2008)

  36. Stelios Dimas and Dimitri Tsoubelis Sym: A new symmetry-finding package for mathematica, in: Proceedings of the 10th International Conference in Modern Group Analysis (2004) pp. 64–70

  37. Stelios Dimas and Dimitri Tsoubelis A new mathematica-based program for solving overdetermined systems of pdes, in: 8th International Mathematica Symposium (2006)

  38. H Ralph Lewis Jr, Phys. Rev. Lett. 18(15), 636 (1967)

    ADS  Google Scholar 

  39. H Ralph Lewis Jr, J. Math. Phys. 9(11), 1976 (1968)

    Article  ADS  Google Scholar 

  40. H Ralph Lewis Jr, Phys. Rev. 172(5), 1313 (1968)

    Article  ADS  Google Scholar 

  41. H Ralph Lewis Jr and W B Riesenfeld, J. Math. Phys. 10(8), 1458 (1969)

    Article  ADS  Google Scholar 

  42. Martin Kruskal, J. Math. Phys. 3(4), 806 (1962)

    Article  Google Scholar 

  43. P G L Leach, J. Austral. Math. Soc. Ser. B 20(1), 97 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  44. P G L Leach, J. Math. Phys. 18(8), 1608 (1977)

    Article  ADS  Google Scholar 

  45. M Sebawe Abdalla and P G L Leach, J. Phys. A: Math. Gen. 36(49), 12205 (2003)

    Article  ADS  Google Scholar 

  46. Andrei D Polyanin and Valentin F Zaitsev Handbook of nonlinear partial differential equations (CRC Press, 2003)

Download references

Acknowledgements

R Sinuvasan thanks the University Grants Commission for its support. PGLL thanks Professor K M Tamizhmani and the Department of Mathematics, Pondicherry University, for providing facilities whilst this work was undertaken. PGLL also thanks the University of KwaZulu-Natal and the National Research Foundation of the Republic of South Africa for their continued support. Any views expressed in this paper are not necessarily those of the two institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R SINUVASAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SINUVASAN, R., TAMIZHMANI, K.M. & L LEACH, P.G. Algebraic resolution of the Burgers equation with a forcing term. Pramana - J Phys 88, 74 (2017). https://doi.org/10.1007/s12043-017-1382-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-017-1382-3

Keywords

PACS Nos

Navigation