Skip to main content
Log in

Structural, morphological, optical and antibacterial activity of rod-shaped zinc oxide and manganese-doped zinc oxide nanoparticles

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Pure ZnO and Mn-doped ZnO nanoparticles were synthesized by Co-precipitate method. The structural characterizations of the nanoparticles were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. UV–Vis, FTIR and photoluminescence (PL) spectroscopy were used for analysing the optical properties of the nanoparticles. XRD results revealed the formation of ZnO and Mn-doped ZnO nanoparticles with wurtzite crystal structure having average crystalline size of 39 and 20 nm. From UV–Vis studies, the optical band-gap energy of 3.20 and 3.25 eV was obtained for ZnO and Mn-doped ZnO nanoparticles, respectively. FTIR spectra confirm the presence of ZnO and Mn-doped ZnO nanoparticles. Photoluminescence analysis of all samples showed four main emission bands: a strong UV emission band, a weak blue band, a weak blue–green band and a weak green band indicating their high structural and optical qualities. The antibacterial efficiency of ZnO and Mn-doped ZnO nanoparticles were studied using disc diffusion method. The Mn-doped ZnO nanoparticles show better antibacterial activity when higher doping level is 10 at% and has longer duration of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. U Desselberger, J. Infect. 40, 3 (2000)

    Article  Google Scholar 

  2. J S Kim, E Kuk, K N Yu, J H Kim, S J Park, H J Lee, S H Kim, Y K Park, Y H Park, C Y Hwang, Y K Kim, and Y S Lee, Nanomedicine 3, 95 (2005)

    Google Scholar 

  3. K R Raghupathi, R T Koodali, and A C Manna, Langmuir 27, 4020 (2011)

    Article  Google Scholar 

  4. J Liu, Z Guo, and F L Meng, Cryst. Growth Des. 9, 1716 (2009)

    Article  Google Scholar 

  5. K Ravichandran, R Mohan, N Jabena Begum, K Swaminathan, and C Ravidhas, J. Phys. Chem. Solids 74, 1794 (2013)

    Article  ADS  Google Scholar 

  6. B Sundaresan, A Vasumathi, K Ravichandran, P Ravikumar, and B Sakthivel, Surf. Eng. 28, 323 (2012)

    Article  Google Scholar 

  7. X S Tang, E Shi, G Choo, L Li, J Ding, and J M Xue, Chem. Mater. Am. Chem. Soc. 22, 3383 (2010)

    Google Scholar 

  8. H Wang and C Xie, J. Phys. Chem. Solids 69, 2440 (2008)

    Article  ADS  Google Scholar 

  9. M Ladanov, P Algarin-Amaris, P Villalba, Y Emirov, G Matthews, S Thomas, K Ram, A Kumar, and J Wang, J. Phys. Chem. Solids 74, 1578 (2013)

    Article  ADS  Google Scholar 

  10. S H Chen, J X Ji, Q Lian, Y L Wen, H B Shen, and N Q Jia, Nano Biomed. Eng. 2, 15 (2010)

    Google Scholar 

  11. K W Chae, Q Zhang, J S Kim, Y H Jeong, and G Cao, J. Nanotechnol. 1, 128 (2010)

    Google Scholar 

  12. X Y Ma and W D Zhang, Polym. Degrad. Stab. 94, 1103 (2009)

    Article  Google Scholar 

  13. S Chakraborty, A K Kole, and P Kumbhakar, Mater. Lett. 67, 362 (2012)

    Article  Google Scholar 

  14. M S Niasari, F Davar, and A Khansari, J. Alloys Compd. 509, 61 (2011)

    Article  Google Scholar 

  15. J Yang, L Fei, H Liu, Y Liu, M Gao, Y Zhang, and L Yang, J. Alloys Compd. 509, 3672 (2011)

    Article  Google Scholar 

  16. Y Yang, H Chen, B Zhao, and X Bao, J. Crystal Growth 263, 447 (2004)

    Article  ADS  Google Scholar 

  17. J Q Hu, Q Li, N B Wong, C S Lee, and S T Lee, Chem. Mater. 14, 1216 (2002)

    Article  Google Scholar 

  18. J Y Lao, J Y Huang, D Z Wang, and Z F Ren, Nano Lett. 3, 235 (2003)

    Article  ADS  Google Scholar 

  19. R Chauhan, A Kumar, and R P Chaudharya, J. Chem. Pharm. Res. 2, 178 (2010)

    Google Scholar 

  20. R Savu, R Parra, E Joanni, B Jancar, S A Elizario, R de Camargo, P R Bueno, J A Varela, E Longo, and M A Zaghate, J. Crystal Growth 311, 4102 (2009)

    Article  ADS  Google Scholar 

  21. O D Jayakumar, I K Gopalakrishnan, R M Kadam, A Vinu, A Asthana, and A K Tyagi, J. Crystal Growth 300, 358 (2007)

    Article  ADS  Google Scholar 

  22. V Senthamilselvi, K Saravanakumar, N Jabena Begum, R Anandhi, A T Ravichandran, B Sakthivel, and K Ravichandran, J. Mater. Sci.: Mater. Electron. 23, 302 (2012)

    Google Scholar 

  23. R Anandhi, R Mohan, K Swaminathan, and K Ravichandran, Superlatt. Microstruct. 51, 680 (2012)

    Article  ADS  Google Scholar 

  24. B D Cullity Elements of X-ray diffraction (Addison-Wesley Publishing Company, 1978

  25. A Goswami, Thin film fund (New Age International (P) Ltd Publications, New Delhi, 2005)

    Google Scholar 

  26. S Jung Kim and D W Park, Appl. Surf. Sci. 255, 5363 (2009)

    Article  ADS  Google Scholar 

  27. D Jung, Solid State Sci. 12, 466 (2010)

    Article  ADS  Google Scholar 

  28. G Elilarassi and J Chandrasekaran, Mater. Sci. Mater. Electron. 21, 1168 (2010)

    Article  Google Scholar 

  29. S Suwanboon, P Amornpitoksuk, A Haidoux, and J C Tedenac, J. Alloys Compd. 462, 335 (2008)

    Article  Google Scholar 

  30. R Viswanatha, S Sapra, S Gupta, B Satpati, P V Satyam, B N Dev, and D D Sarma, J. Phys. Chem. B 108, 6303 (2004)

    Article  Google Scholar 

  31. P D Cozzoli, M L Curri, A Agostiano, G Leo, and M Lomascolo, J. Phys. Chem. B 107, 4756 (2003)

    Article  Google Scholar 

  32. Y Guo, X Cao, X Lan, C Zhao, X Xue, and Y Song, J. Phys. Chem. C 112, 8832 (2008)

    Article  Google Scholar 

  33. W I Park, G C Yi, and H M Jang, Appl. Phys. Lett. 79, 2022 (2001)

    Article  ADS  Google Scholar 

  34. S Maensiri, C Masingboon, V Promarak, and S Seraphin, Optik. Mater. 29, 1700 (2007)

    Article  ADS  Google Scholar 

  35. M Vasanthi, K Ravichandran, N Jabena Begum, G Muruganantham, S Snega, A Panneerselvam, and P Kavitha, Superlatt. Microstruct. 55, 180 (2013)

    Article  ADS  Google Scholar 

  36. L Zang, Y Jiang, Y Ding, M Povey, and D York, J. Nanopart. Res. 9, 479 (2007)

    Article  Google Scholar 

  37. N Padmavathy and R Vijayaraghavan, Sci. Technol. Adv. Mater. 9, 035004 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B NATARAJAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DHANALAKSHMI, A., NATARAJAN, B., RAMADAS, V. et al. Structural, morphological, optical and antibacterial activity of rod-shaped zinc oxide and manganese-doped zinc oxide nanoparticles. Pramana - J Phys 87, 57 (2016). https://doi.org/10.1007/s12043-016-1248-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1248-0

Keywords

PACS Nos

Navigation