Skip to main content
Log in

A generic travelling wave solution in dissipative laser cavity

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A large family of cosh-Gaussian travelling wave solution of a complex Ginzburg–Landau equation (CGLE), that describes dissipative semiconductor laser cavity is derived. Using perturbation method, the stability region is identified. Bifurcation analysis is done by smoothly varying the cavity loss coefficient to provide insight of the system dynamics. He’s variational method is adopted to obtain the standard sech-type and the not-so-explored but promising cosh-Gaussian type, travelling wave solutions. For a given set of system parameters, only one sech solution is obtained, whereas several distinct solution points are derived for cosh-Gaussian case. These solutions yield a wide variety of travelling wave profiles, namely Gaussian, near-sech, flat-top and a cosh-Gaussian with variable central dip. A split-step Fourier method and pseudospectral method have been used for direct numerical solution of the CGLE and travelling wave profiles identical to the analytical profiles have been obtained. We also identified the parametric zone that promises an extremely large family of cosh-Gaussian travelling wave solutions with tunable shape. This suggests that the cosh-Gaussian profile is quite generic and would be helpful for further theoretical as well as experimental investigation on pattern formation, pulse dynamics and localization in semiconductor laser cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. N N Akhmediev and A Ankiewicz, Solitons: Nonlinear pulses and beams (Chapman and Hall, London, 1997)

    MATH  Google Scholar 

  2. N B Abraham and W J Firth, J. Opt. Soc. Am. B 7, 951 (1990)

    Article  ADS  Google Scholar 

  3. T Ackemann and W Lange, Appl. Phys. B 72, 21 (2001)

    Article  ADS  Google Scholar 

  4. F T Arecchi, S Boccaletti and P L Ramazza, Phys. Rep. 318, 1 (1999)

    Article  ADS  Google Scholar 

  5. J Ross, S C Muller and C Vidal, Science 240, 460 (1999)

    Article  ADS  Google Scholar 

  6. A C Newell, Solitons in mathematics and physics (SIAM, Philadelphia, USA, 1985)

    Book  MATH  Google Scholar 

  7. J D Murray, Mathematical biology: Spatial models and biomedical applications, 3rd edn (Springer, Berlin, 2007)

  8. N N Akhmediev and A Ankiewicz, Dissipative solitons: Lecture notes in physics (Springer, Berlin, 2005) Vol. 661

  9. T Ackemann, W J Firth and G L Oppo, Adv. At., Mol. and Opt. Phys. 57, 323 (2009)

    Article  ADS  Google Scholar 

  10. K Iga, IEEE J. Sel. Top. Quant. Electron. 6, 1201 (2000)

    Article  Google Scholar 

  11. M van-Hecke, Phys. Rev. Lett. 80, 1896 (1998)

    Article  ADS  Google Scholar 

  12. W van-Saarloos, The complex Ginzburg–Landau equation for beginners, Spatio-temporal patterns in nonequilibrium complex systems: Proceedings of the Santa Fe workshop edited by P E Cladis and P Palffy-Muhoray (Addison-Wesley, Chicago, 1994) pp. 19–31

  13. G Dangelmayr and L Kramer, Mathematical tools for pattern formation, Evolution of spontaneous structures in dissipative continuous systems edited by F H Busse and S C Mueller (Springer, New York, 1998) pp. 1–85

  14. A Doelman, J. Nonlin. Sci. 3, 225 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  15. H Chate, Nonlinearity 7, 185 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  16. P V Paulau, A J Scroggie, A Naumenko, T Ackemann, N A Loiko and W J Firth, Phys. Rev. E 75, 056208(1) (2007)

    Article  ADS  Google Scholar 

  17. K A Montgomery and M Silber, Nonlinearity 17, 2225 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  18. J Xiao, G Hu, J Yang and J Gao, Phys. Rev. Lett. 81, 5552 (1998)

    Article  ADS  Google Scholar 

  19. Y Kuramoto and T Tsuzuki, Prog. Theor. Phys. 55, 356 (1976)

    Article  ADS  Google Scholar 

  20. I S Aranson and L Kramer, Rev. Mod. Phys. 74, 99 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. W van-Saarloos and P C Hohenberg, Physica D 56, 303 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  22. J D Anderson, R A Ryan, M Wu and L D Carr, New J. Phys. 16, 023025(1) (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. Y Tanguy, T Ackemann, W J Firth and R Jager, Phys. Rev. Lett. 100, 013907(1) (2008)

    Article  ADS  Google Scholar 

  24. N Radwell and T Ackemann, IEEE J. Quant. Electron. 45, 1388 (2009)

    Article  ADS  Google Scholar 

  25. A J Scroggie, W J Firth and G L Oppo, Phys. Rev. A 80, 013829(1) (2009)

    Article  ADS  Google Scholar 

  26. P V Paulau, D Gomila, T Ackemann, N A Loiko and W J Firth, Phys. Rev. E 78, 016212(1) (2008)

    Article  ADS  Google Scholar 

  27. P Zhong, R Yang and G Yang, Phys. Lett. A 373, 19 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  28. H Cong, J Liu and X Yuan, J. Math. Phys. 50, 063516(1) (2009)

    Article  ADS  MathSciNet  Google Scholar 

  29. R Deissler and H R Brand, Phys. Rev. Lett. 72, 478 (1992)

    Article  ADS  Google Scholar 

  30. W J Firth and P V Paulau, Eur. Phys. J. D 59, 13 (2010)

    Article  ADS  Google Scholar 

  31. B A Malomed and A A Nepomnyashchy, Phys. Rev. A 42, 6009 (1990)

    Article  ADS  Google Scholar 

  32. V Skarka, N B Aleksic, H Leblond, B A Malomed and D Mihalache, Phys. Rev. Lett. 105, 213901(1) (2010)

    Article  ADS  Google Scholar 

  33. R Goh and A Scheel, J. Nonlinear Sci. 24, 117 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  34. A V Porubov and M G Velarde, J. Math. Phys. 40, 884 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  35. L I U Cheng-Shi, Commun. Theory. Phys. 43, 787 (2005)

    Article  ADS  Google Scholar 

  36. R Conte and M Musette, Physica D 69, 1 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  37. K Nozaki and N Bekki, J. Phys. Soc. Jpn 53, 1581 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  38. L I Hua-Mei, L I N Ji and X U You-Sheng, Commun. Theor. Phys. 44, 79 (2005)

    Article  ADS  Google Scholar 

  39. V Skarka and N B Aleksic, Phys. Rev. Lett. 96, 013903(1) (2006)

    Article  ADS  Google Scholar 

  40. W Bao, Q Du and Y Zhang, SIAM J. Appl. Math. 67, 1740 (2007)

    Article  MathSciNet  Google Scholar 

  41. J H He, Int. J. Mod. Phys. B 20, 1141 (2006)

    Article  ADS  Google Scholar 

  42. H K Khalil, Nonlinear systems 3rd edn (Prentice Hall, USA, 2002)

    Google Scholar 

  43. D Puzyrev, S Yanchuk, A G Vladimirov and S V Gurevich, SIAM J. Appl. Dyn. Syst. 13, 986 (2014)

    Article  MathSciNet  Google Scholar 

  44. B Janiaud, A Pumir, D Bensimon and V Choquette, Physica D 55, 269 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  45. A N W Hone, Physica D 205, 292 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  46. V García-Morales and K Krischer, Contemp. Phys. 53, 79 (2012)

    Article  ADS  Google Scholar 

  47. S Liu, S Liu, Z Fu and Q Zhao, Chaos, Solitons and Fractals 13, 1377 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  48. S Charkrit, Proceedings of World Congress of Engineering (London, UK, July 2013) pp. 156–160

  49. G P Agrawal, Nonlinear fiber optics, 4th edn (Academic Press, San Diego, USA, 2001)

  50. S Konar and S Jana, Opt. Commun. 236, 7 (2004)

    Article  ADS  Google Scholar 

  51. A Biswas, PIER 96, 1 (2009)

    Article  Google Scholar 

  52. S Jana and S Konar, Opt. Commun. 267, 24 (2006)

    Article  ADS  Google Scholar 

  53. S M Cox and P C Matthews, J. Comput. Phys. 176, 430 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  54. D M Winterbottom, Pattern formation with a conservation law, Ph.D. thesis (The University of Nottingham, England, 2006)

Download references

Acknowledgement

S Jana would like to acknowledge the financial support of UGC through UGC-BSR research start-up grant, No. F. 20-1 /2012 (BSR) /20-13 (12) /2012(BSR). B Kaur would like to acknowledge the financial support of UGC through UGC-BSR Research Fellowships in Sciences, F.4-1 /2006(BSR) /7-304 /2010(BSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BALDEEP KAUR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KAUR, B., JANA, S. A generic travelling wave solution in dissipative laser cavity. Pramana - J Phys 87, 53 (2016). https://doi.org/10.1007/s12043-016-1244-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1244-4

Keywords

PACS Nos

Navigation