Skip to main content
Log in

On phase-space representations of quantum mechanics using Glauber coherent states

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A phase-space formulation of quantum mechanics is proposed by constructing two representations (identified as pq and qp) in terms of the Glauber coherent states, in which phase-space wave functions (probability amplitudes) play the central role, and position q and momentum p are treated on equal footing. After finding some basic properties of the pq and qp wave functions, the quantum operators in phase-space are represented by differential operators, and the Schrödinger equation is formulated in both pictures. Afterwards, the method is generalized to work with the density operator by converting the quantum Liouville equation into pq and qp equations of motion for two-point functions in phase-space. A coordinate transformation between those points allows one to construct a cell in phase-space, whose central point can be treated as a parameter. In this way, one gets equations of motion describing the evolution of one-point functions in phase-space. Finally, it is shown that some quantities obtained in this paper are related in a natural way with cross-Wigner functions, which are constructed with either the position or the momentum wave functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. D F Styer, M S Balkin, K M Becker, M R Burns, C E Dudley, S T Forth, J S Gaumer, M A Kramer, D C Oertel, L H Park, M T Rinkoski, C T Smith, and T D Wotherspoon, Am. J. Phys. 70(3), 288 (2002) http://dx.doi.org/10.1119/1.1445404

    Article  ADS  Google Scholar 

  2. R J Glauber, Phys. Rev. 131(6), 2766 (1963) http://dx.doi.org/10.1103/PhysRev.131.2766

    Article  ADS  MathSciNet  Google Scholar 

  3. M Hillery, R F O’Connell, M O Scully, and E P Wigner, Phys. Rep. 106(3), 121 (1984) http://dx.doi.org/10.1016/0370-1573(84)90160-1

    Article  ADS  MathSciNet  Google Scholar 

  4. Y S Kim and M E Noz, Phase space picture of quantum mechanics. Group theoretical approach, Lecture notes in physics (World Scientific, Singapore, 1991) Vol. 40

  5. D Dragoman, Phys. Scr. 72(4), 290 (2005) http://dx.doi. org/10.1238/Physica.Regular.072a00290

    Article  ADS  Google Scholar 

  6. C K Zachos, D B Fairlie and T L Curtright (Eds), Quantum mechanics in phase space. An overview with selected papers, World scientific series in 20th century physics (World Scientific Publishing Co., 2005) Vol. 34, http://www. worldscientific.com/worldscibooks/10.1142/5287

  7. T L Curtright, D B Fairlie and C K Zachos, A concise treatise on quantum mechanics in phase space (World Scientific Publishing Co. and Imperial College Press, 2014), ISBN 978- 98114520430

  8. W P Schleich, Quantum optics in phase space (Wiley-VCH Verlag Berlin, 2001), ISBN: 978-3-527-63500-9

  9. K Husimi, Proceedings of the Physico-Mathematical Society of Japan, 3rd Series 22(4), 264 (1940) http://goo.gl/yDbV3c

    Google Scholar 

  10. K Takahashi, Prog. Theor. Phys. Suppl. 98, 109 (1989) http://dx.doi.org/10.1143/PTPS.98.109

    Article  ADS  Google Scholar 

  11. D Campos, J D Urbina, and C Viviescas, J. Phys. A: Math. Gen. 33, 6129 (2000) http://iopscience.iop.org/0305-4470/33/35/304

    Article  ADS  MathSciNet  Google Scholar 

  12. V Bargmann, Commun. Pure Appl. Math. 14(3), 187 (1961) http://dx.doi.org/10.1002/cpa.3160140303

    Article  MathSciNet  Google Scholar 

  13. G Torres-Vega and J H Frederick, J. Chem. Phys. 93(12), 8862 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  14. G Torres-Vega and J H Frederick, J. Chem. Phys. 93(4), 3103 (1993)

    Article  ADS  Google Scholar 

  15. J E Harriman, J. Chem. Phys. 100(5), 3651 (1994) http://dx.doi.org/10.1063/1.466353

    Article  ADS  Google Scholar 

  16. K B Møller, T G Jørgensen, and G Torres-Vega, J. Chem. Phys. 106(17), 7228 (1997) http://dx.doi.org/10.1063/1.473684

    Article  Google Scholar 

  17. J J Wlodarz, J. Chem. Phys. 100(10), 7476 (1994) http://dx.doi.org/10.1063/1.466891

    Article  ADS  Google Scholar 

  18. Q -S Li and X -G Hu, Phys. Scr. 51(4), 417 (1995) http://dx.doi.org/10.1088/0031-8949/51/4/001

    Article  ADS  Google Scholar 

  19. M Ban, J. Math. Phys. 39(4), 1744 (1998) http://dx.doi.org/10.1063/1.532262

    Article  ADS  MathSciNet  Google Scholar 

  20. M A Gosson, J. Phys. A 38, 9263 (2005) http://stacks.iop.org/ 0305-4470/38/i=42/a=007

    Article  ADS  MathSciNet  Google Scholar 

  21. T B Smith, J. Phys. A 39(6), 1469 (2006) http://dx.doi.org/10.1088/0305-4470/39/6/019

    Article  ADS  Google Scholar 

  22. A J Bracken and P Watson, J. Phys. A 43(39), 395304 (2010) http://dx.doi.org/10.1088/1751-8113/43/39/395304

    Article  MathSciNet  Google Scholar 

  23. W H Louisell, Quantum statistical properties of radiation (John Wiley & Sons, New York, 1973), ISBN-10: 0471547859

  24. W-M Zhang, D H Fen, and R Gilmore, Rev. Mod. Phys. 62(4), 867 (1990) http://dx.doi.org/10.1103/RevModPhys.62.867

    Article  ADS  Google Scholar 

  25. N Mukunda, Pramana – J. Phys. 56(2–3), 245 (2001) http://dx.doi.org/10.1007/s12043-001-0122-9

    Article  ADS  Google Scholar 

  26. A D Ribeiro, F Parisio, and M A M de Aguiar, J. Phys. A 42(10), 105301 (2009) http://dx.doi.org/10.1088/1751-8113/42/10/105301

    Article  ADS  Google Scholar 

  27. K E Cahill and R J Glauber, Phys. Rev. 177(5), 1857 (1969) http://dx.doi.org/10.1103/PhysRev.177.1857

    Article  ADS  Google Scholar 

  28. J G Kirkwood, Phys. Rev. 44(1), 31 (1933) http://dx.doi.org/10.1103/PhysRev.44.31

    Article  ADS  Google Scholar 

  29. N L Balazs and B K Jennings, Phys. Rep. 104(6), 347 (1984) http://dx.doi.org/10.1016/0370-1573(84)90151-0

    Article  ADS  MathSciNet  Google Scholar 

  30. H -W Lee, Phys. Rep. 259(3), 147 (1995) http://dx.doi.org/10.1016/ 0370-1573(95)00007-4

    Article  ADS  Google Scholar 

  31. B Tsirelson, Analytic function, Encyclopedia of Mathematics, http://goo. gl/Uc6iOZ

  32. D Campos, Interconexíon entre las funciones de onda en representacíon de coordenadas, impulsos y estados coherentes (1996), http://www.bdigital.unal.edu.co/35028/1/35260-138008-1-PB.pdf

  33. L C Papaloucas, Prog. Theor. Phys. 95(1), 37 (1995) http://Ptp.oxfordjournals.org/content/95/1/37.full.pdf

    ADS  MathSciNet  Google Scholar 

  34. F Bopp, Werner Heisenberg und die Physik unserer Zeit (Vieweg + Teubner Verlag, 1961), chap.: Statistische Mechanik bei Störung des Zustands eines phyikalischen System durch die Beobachtung, pp. 128–149, http://dx.doi.org/10.1007/978-3-663-05439-9

  35. R Kubo, J. Phys. Soc. Jpn 19(11), 2127 (1964) http://doi.org/10. 1143/JPSJ.19.2127

    Article  ADS  Google Scholar 

  36. M A de Gosson and S M Gosson, Phys. Lett. A 376(4), 293 (2012) http://dx.doi.org/10.1016/j.physleta.2011.11.007

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the researchers whose constructive comments have helped in improving the theoretical formulation presented in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DIÓGENES CAMPOS.

Appendix A. Proof of (75) and (82)

Appendix A. Proof of (75) and (82)

To demonstrate the second equality in (75), consider a pure state described by the momentum wave function \(\tilde {\Psi }(p, t)\). The Fourier transform of the μth partial derivative of \(\tilde {\Psi }(p, t)\) with respect to p is denoted as Φ μ (q,t) and given by

$$\begin{array}{@{}rcl@{}} {\Phi}_{\mu}(q, t) &:=& (2\pi \hbar)^{-f/2} \int w(q, p) \tilde{\Psi}^{(\mu)}\left(p, t\right) \mathrm{d}p\\ &=&\left(-\frac{i}{\hbar} q\right)^{\mu} {\Psi}(q, t), \end{array} $$
(A.1)

which is simply related to the position wave function Ψ(q,t). Using the inverse Fourier transform of (A.1), the functions \(\tilde {\Psi }^{(\mu )}(p^{\prime } \! -\! \frac {1}{2} p, t)\) and \(\tilde {\Psi }^{(\eta )}(p^{\prime } + \frac {1}{2} p, t)\) are written as Fourier transforms of Φ μ (x,t) and Φ η (X,t), and inserted in (75), in the definition of ρ μ η (q , p , t). One performs the integration over p by invoking the integral representation of the Dirac delta function, and reorganizes the resulting integral over x by introducing a change of variable of the form \(\frac {1}{2}q = q^{\prime } - x\) (see figure 1). Afterwards, the second equality in (A.1) is used, and the resulting expression is reorganized by means of the identity

$$\begin{array}{@{}rcl@{}} {\Psi}^{\star}\!\left(\!q^{\prime}\! -\! \frac{1}{2}q, t\! \right) {\Psi}\! \left(\! q^{\prime} \! +\! \frac{1}{2}q, t \right)\! &=&\! \left\langle \left. q^{\prime} + \frac{1}{2} q \right|{\Psi}(t) \right\rangle\\ &&\times \left\langle {\Psi}(t)\left| q^{\prime} - \frac{1}{2}q\right.\! \right\rangle.\\ \end{array} $$
(A.2)

Finally, by considering all the pure states involved in the density operator \(\hat {\rho }(t)\), given by (55), one obtains the second equality in (75).

A similar procedure allows to demonstrate the second equality in (82). Instead of (A.1), one now uses the expression

$$\begin{array}{@{}rcl@{}} \tilde{\Phi}_{\mu}(p, t) &:=& (2\pi \hbar)^{-f/2} \int w^{\star}(q, p) {\Psi}^{(\mu)}\left(q, t\right) \mathrm{d}q\\ &=& \left(+\frac{i}{\hbar} p\right)^{\mu} \tilde{\Psi}(p, t) \end{array} $$
(A.3)

and the identity

$$\begin{array}{@{}rcl@{}} \tilde{\Psi}^{\star}\!\left(p^{\prime} \! -\! \frac{1}{2}p, t \right) \tilde{\Psi}\left(\! p^{\prime}\! +\! \frac{1}{2}p, t \right) \! &=&\! \left\langle \left. p^{\prime}\! +\! \frac{1}{2} p \right| \,{\Psi}(t) \right\rangle\\ &&\times\! \left\langle\! {\Psi}{}({}t{}){} \left|{} p^{\prime}{} -{} \frac{1}{2} p \right. \right\rangle.\\ \end{array} $$
(A.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CAMPOS, D. On phase-space representations of quantum mechanics using Glauber coherent states. Pramana - J Phys 87, 27 (2016). https://doi.org/10.1007/s12043-016-1230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1230-x

Keywords

PACS Nos

Navigation