Skip to main content
Log in

L subshell fluorescent X-ray measurements to study CK transitions in the 66 Z 83 region

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

L subshell fluorescent X-rays in Dy, Ho, Er, Lu, Ta, W, Pt, Au, Hg, Pb and Bi have been measured using synchrotron with selective creation of electron vacancies in individual subshells. Coster–Kronig (CK) yields were derived from the measured intensities. Present measurements have been made at photon energies above the edges where differences between measured and theoretical attenuation coefficients are almost negligible. Parametric trends for the results with Z were developed to cover all Zs in the range of 66–83. The trends predict the switching-off of L 1–L 2, N1 transition at Z = 67. The extent of fall /rise of f Lij values corresponding to off /on of certain transitions is found inversely proportional to the difference in binding energies of two consecutive subshells involved in the transition. For Zs above /below these rises /falls, f L13 and f L12 values are almost constants. f L23 values involving no break at Zs follow the general photoionization behaviour that ionization probability is highest at the edge energy and decreases with photon energy. Yield measurements with synchrotron radiation for Dy, Ho, Lu, Hg and Bi and experimental values for f L23, f L12 in Lu and for f L13 in Ta are being quoted for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. J L Campbell, At. Data Nucl. Data Tables 85, 291 (2003)

    Article  ADS  Google Scholar 

  2. W Bambynek, B Crasemann, R W Fink, H U Freund, H Mark, C D Swift, R E Prince and P V Rao, Rev. Mod. Phys. 44, 716 (1972)

    Article  ADS  Google Scholar 

  3. P V Rao and B Crasemann, Phys. Rev. A 139, 1926 (1965)

    Article  ADS  Google Scholar 

  4. P V Rao, R E Wood, J M Palms and W Fink, Phys. Rev. A 178, 1997 (1969)

    Article  ADS  Google Scholar 

  5. H U Freud and R W Fink, Phys. Rev. 178, 1952 (1969)

    Article  ADS  Google Scholar 

  6. J M Palms, R E Wood, P V Rao and V O Kostroun, Phys. Rev. C 2, 592 (1970)

    Article  ADS  Google Scholar 

  7. J C McGeorge, S Mohan and R W Fink, Phys. Rev. A 4, 1317 (1971)

    Article  ADS  Google Scholar 

  8. V R Veluri, R E Wood, J M Palms and P V Rao, J. Phys. B 7, 1486 (1974)

    Article  ADS  Google Scholar 

  9. D W Nix and R W Fink, Z. Phys. A 273, 305 (1975)

    Article  ADS  Google Scholar 

  10. R E Wood, J M Palms and P V Rao, Phys. Rev. A 5, 11 (1972)

    Article  ADS  Google Scholar 

  11. M Tan, R A Braga, R W Fink and P V Rao, Phys. Scr. 25, 536 (1982)

    Article  ADS  Google Scholar 

  12. J L Campbell, P L McGhee, R R Gingerich, R W Ollerhead and J A Maxwell, Phys. Rev. A 30, 161 (1984)

    Article  ADS  Google Scholar 

  13. A L Catz, Phys. Rev. A 36, 3155 (1987)

    Article  ADS  Google Scholar 

  14. J L Campbell and P L McGhee, J. Phys. 48, C9-597 (1987)

    Google Scholar 

  15. P L McGhee and J L Campbell, J. Phys. B 21, 2295 (1988)

    Article  ADS  Google Scholar 

  16. S Santra, D Mitra, M Sarkar, D Bhattacharya, P Sen and A C Mandal, Phys. Rev. A 69, 024701–1-4 (2004)

    ADS  Google Scholar 

  17. D G Douglas, Can. J. Phys. 54, 1124 (1976)

    Article  ADS  Google Scholar 

  18. O Simsek, J. Phys. B 33, 3773 (2000)

    Article  ADS  Google Scholar 

  19. O Simsek, Phys. Rev. A 62, 052517–1 (2000)

    Article  ADS  Google Scholar 

  20. E Oz, N Ekinci, Y Ozdemir, M Ertugrul, Y Sahin and H Erdogan, J. Phys. B 34, 631 (2001)

    Article  ADS  Google Scholar 

  21. M Ertugrul, J. Quant. Spectrosc. Radiat. Transfer 72, 567 (2002)

    Article  ADS  Google Scholar 

  22. O Sogut, Instrum. Sci. Technol. 31, 85 (2003)

    Article  Google Scholar 

  23. P Singh, A Kumar, D Mehta, K P Singh and N Singh, Nucl. Instrum. Methods: Phys. Res. B 196, 261 (2002)

    Article  ADS  Google Scholar 

  24. M Sharma, P Singh, S Puri, D Mehta and N Singh, Phys. Rev. A 69, 032501–1-5 (2004)

    Article  ADS  Google Scholar 

  25. S Gupta, V K Mittal and R Mittal, J. Phys. B 43, 235002–1-7 (2010)

    Article  Google Scholar 

  26. J H Scofield, Lawrence Livermore Laboratory, UCRL Report No. 51362 (unpublished) (1973)

  27. W Jitschin, G Materlik, U Werner and P Funke, J. Phys. B 18, 1139 (1985)

    Article  ADS  Google Scholar 

  28. U Werner and W Jitschin, Phys. Rev. A 38, 4009 (1988)

    Article  ADS  Google Scholar 

  29. H J Sanchez, R D Perez, M Rubio and G Castellano, Radiat. Phys. Chem. 48, 701 (1996)

    Article  ADS  Google Scholar 

  30. R A Barrea, C A Perez and H J Sanchez, J. Phys. B 35, 3167 (2002)

    Article  ADS  Google Scholar 

  31. M Kolbe, P Honicke, M Muller and B Beckhoff, Phys. Rev. A 86, 042512–1-9 (2012)

    Article  ADS  Google Scholar 

  32. M O Krause, J. Phys. Chem. Ref. Data 8, 307 (1979)

    Article  ADS  Google Scholar 

  33. M H Chen, B Crasemen and H Mark, Phys. Rev. A 24, 177 (1981)

    Article  ADS  Google Scholar 

  34. S Puri, D Mehta, B Chand, N Singh and P N Trehan, X-ray Spectrom. 22, 358 (1993)

    Article  Google Scholar 

  35. E J McGuire, Phys. Rev. A 3, 587 (1971)

    Article  ADS  Google Scholar 

  36. J L Campbell, At. Data Nucl. Data Tables 95, 115 (2009)

    Article  ADS  Google Scholar 

  37. T Papp, X-ray Spectrom. 41, 128 (2012)

    Article  Google Scholar 

  38. W Jitschin, U Werner, G Materlik and G D Doolen, Phys. Rev. A 35, 5038 (1987)

    Article  ADS  Google Scholar 

  39. M K Tiwari, P Gupta, A K Sinha, S R Kane, A K Singh, S R Garg, C K Garg, G S Lodha and S K Deb, J. Synchrotron. Rad. 20, 386 (2013)

    Article  Google Scholar 

  40. G Kaur, S Gupta, M K Tiwari and R Mittal, Nucl. Instrum. Methods: Phys. Res. B 320, 37 (2014)

    Article  ADS  Google Scholar 

  41. W Jitschin, R Stotzel, T Papp, M Sarkar and G D Doolen, Phys. Rev. A 52, 977 (1995)

    Article  ADS  Google Scholar 

  42. K S Mann, N Singh, R Mittal, K L Allawadhi and B S Sood, J. Phys. B 23, 3521 (1990)

    Article  ADS  Google Scholar 

  43. E Storm and H I Israel, Nucl. Data Tables 7, 565 (1970)

    Article  ADS  Google Scholar 

  44. S Puri, At. Data Nucl. Data Tables 93, 730 (2007)

    Article  ADS  Google Scholar 

  45. G Kaur and R Mittal, J. Quant. Spectrosc. Radiat. Transfer 148, 42 (2014)

    Article  ADS  Google Scholar 

  46. M J Berger and J H Hubbell, XCOM: Photon Cross-sections on a Personal Computer NBSIR 87-3597 (1987)

  47. R Mittal, Vandana and M Singh, J. Quant. Spectrosc. Radiat. Transfer 68, 593 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is done on Indus-2 synchrotron radiation facility at Raja Ramanna Centre for Advanced Technology, Indore. The accommodating gesture of RRCAT authorities for the experiment, especially the guidance provided by Prof. G S Lodha and financial assistance from UGC-DAE in the form of project grant (CSR-IC-BL-18/CRRS-115/2014-15/1211) are highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RAJ MITTAL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KAUR, G., BANSAL, H., TIWARI, M.K. et al. L subshell fluorescent X-ray measurements to study CK transitions in the 66 Z 83 region. Pramana - J Phys 87, 33 (2016). https://doi.org/10.1007/s12043-016-1223-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1223-9

Keywords

PACS Nos

Navigation