Skip to main content
Log in

Measurement of attenuation cross-sections of some fatty acids in the energy range 122–1330 keV

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The mass attenuation coefficients (μ m) have been measured for undecylic acid (C11H22O2), lauric acid (C12H24O2), tridecylic acid (C13H26O2), myristic acid (C14H28O2), pentadecylic acid (C15H30O2) and palmitic acid (C16H32O2) using 57Co, 133Ba, 137Cs, 60Co and 22Na emitted γ radiation with energies 122, 356, 511, 662, 1170, 1275 and 1330 keV, respectively. The accurate values of the effective atomic number (Z eff), atomic cross-section (σ t,), electronic cross-section (σ e) and the effective electron density (N eff) have great significance in radiation protection and dosimetry. These quantities were obtained by utilizing experimentally measured values of mass attenuation coefficients (μ m). A NaI(Tl) scintillation detector with 8.2% (at 662 keV) resolution was used for detecting of attenuated γ-photons. The variation in Z eff and N eff of fatty acids with energy is discussed. The experimental and theoretical results are in good agreement within 2% deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. D F Jackson and D J Hawkes, Phys. Rep. 70, 169 (1981)

    Article  ADS  Google Scholar 

  2. J H Hubbell, Phys. Med. Biol. 44, RI-22 (1999)

    Article  Google Scholar 

  3. K Singh, R Rani, V Kumar, and K Deep, Appl. Radiat. Isot. 47, 697 (1996)

    Article  Google Scholar 

  4. V Manjunathaguru and T K Umesh, Pramana – J. Phys. 72(2), 375 (2009)

    Article  ADS  Google Scholar 

  5. J H Hubbell and S M Seltzer, NIST (IR) Report No. 5632 (1995)

  6. J H Hubell, Phys. Med. Biol. 51, R245 (2006)

    Article  ADS  Google Scholar 

  7. G J Hine, Phys. Rev. 85, 725 (1952)

    Google Scholar 

  8. M Kurudirek, Radiat. Phys. Chem. 102, 139 (2014)

    Article  ADS  Google Scholar 

  9. V P Singh and N M Badiger, J. Med. Phys. 39(1), 24 (2014)

    Article  Google Scholar 

  10. S R Manohara, S M Hanagodimath, K S Thind, and L Gerward, Nucl. Instrum. Methods: Phys. Res. B 266, 3902 (2008)

    Article  ADS  Google Scholar 

  11. S Prasanna Kumar, V Manjunathaguru, and T K Umesh, Pramana – J. Phys. 74(4), 555 (2009)

    ADS  Google Scholar 

  12. S R Manohara, S M Hanagodimath, and L Greward, Phys. Med. Biol. 53, 377 (2008)

    Article  Google Scholar 

  13. V Manjunathaguru and T K Umesh, J. Phys. B: At. Mol. Opt. Phys. 39, 3969 (2006)

    Article  ADS  Google Scholar 

  14. R B Morabad and B R Kerur, Appl. Radiat. Isot. 68, 271 (2010)

    Article  Google Scholar 

  15. G K Sandhu, Kulwant Singh, B S Lark, and L Gerward, Radiat. Phys. Chem. 65, 211 (2002)

    Article  ADS  Google Scholar 

  16. P P Pawar and G K Bichile, Radiat. Phys. Chem. 92, 22 (2013)

    Article  ADS  Google Scholar 

  17. P S Kore and P P Pawar, Radiat. Phys. Chem. 98, 86 (2014)

    Article  ADS  Google Scholar 

  18. B M Ladhaf and P P Pawar, Radiat. Phys. Chem. 109, 89 (2015)

    Article  ADS  Google Scholar 

  19. A H El-Kateb and A S Abdul-hamid, Appl. Radiat. Isot. 42, 303 (1991)

    Article  Google Scholar 

  20. L Gerward, N Guilbert, K B Jensen, and H Levering, Radiat. Phys. Chem. 60, 23 (2001)

    Article  ADS  Google Scholar 

  21. D Demir, A Tursucu, and T Oznuluer, Radiat. Environ. Biophys. 51, 469 (2012)

    Article  Google Scholar 

  22. C A Jayachandran, Phys. Med. Biol. 16(4), 617 (1971)

    Article  ADS  Google Scholar 

  23. S B Kaginelli, T Rajeshwari, Sharanabasappa, B R Kerur, and A S Kumar, J. Med. Phys. 34(3), 176 (2009)

    Google Scholar 

  24. M Kurudirek and S Topcuoglu, Nucl. Instrum. Methods B 269, 1071 (2011)

    Article  ADS  Google Scholar 

  25. M Kurudirek, Radiat. Phys. Chem. 102, 139 (2014)

    Article  ADS  Google Scholar 

  26. S R Manohara and S M Hanagodimath, Meth. Phys. Res. B 258, 321 (2007)

    Google Scholar 

  27. N Kanematsu, T Inaniwa, and Y Koba, Med. Phys. 39, 1016 (2012)

    Article  Google Scholar 

  28. K Singh, G K Sandhu, B S Lark, and S P Sud, Pramana – J. Phys. 58(3), 521 (2002)

    Article  ADS  Google Scholar 

  29. M J Berger and J H Hubbell, 1987 /1999, “XCOM: Photon Cross Section Database,” Web Version 1.2, available at http://Physics.nist.gov/XCOM http://Physics.nist.gov/XCOM. National Institute of Standards and Technology, Gaithersburg, MD 20899, USA (1999). Originally published as NBSIR 87-3597 “XCOM: Photon Cross Sections on a Personal Computer” (1987)

Download references

Acknowledgements

The authors are thankful to DAE--BRNS for giving financial support for a major research project on the establishment of radiological data for biomolecules using γ-ray spectrometry (Reference No: 35 /14 /18 /2014-BRNS /0293 dated 16 May 2014). One of the authors (D K Gaikwad) would like to thank the University Grants Commission, New Delhi for providing RGNF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D K GAIKWAD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GAIKWAD, D.K., PAWAR, P.P. & SELVAM, T.P. Measurement of attenuation cross-sections of some fatty acids in the energy range 122–1330 keV. Pramana - J Phys 87, 12 (2016). https://doi.org/10.1007/s12043-016-1213-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1213-y

Keywords

PACS Nos

Navigation