Skip to main content

Advertisement

Log in

Determination of gamma-ray parameters for polyethylene glycol of different molecular weights

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Mass attenuation coefficient (μ m) for polyethylene glycol (PEG) of different molecular weights was determined by using NaI (Tl) scintillator and WinXcom mixture rule at gamma energies of 59.5, 302.9, 356.0, 661.7, 1173.2 and 1332.5 keV. The total atomic, molecular and electronic cross sections, half-value layer, effective atomic and electron numbers, mass energy-absorption coefficients and kerma relative to air are calculated. The energy and compositional dependence of μ m values, and the related radiation absorption parameters, are evaluated and discussed. The experimental results agree well with the theoretical ones, within an uncertainty of 1% in the effective atomic number for all PEG samples at the designated energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I.F. Al-Hamarneh, P.D. Pedrow, S.C. Goheen et al., Impedance spectroscopy study of composite thin fims of hydrated pplyethylene glycol. IEEE Trans. Plasma Sci. 35, 1518–1526 (2007). doi:10.1109/tps.2007.906136

    Article  Google Scholar 

  2. S.T. Proulx, P. Luciani, A. Christiansen et al., Use of a PEG-conjugated bright near-infrared dye for functional imaging of rerouting of tumor lymphatic drainage after sentinel lymph node metastasis. Biomaterials 34, 5128–5137 (2013). doi:10.1016/j.biomaterials.2013.03.034

    Article  Google Scholar 

  3. I.F. Al-Hamarneh, P.D. Pedrow, A. Eskhan et al., Synthesis and characterization of di(ethylene glycol) vinyl ether films deposited by atmospheric pressure corona discharge plasma. Surf. Coat. Technol. 234, 33–41 (2013). doi:10.1016/j.surfcoat.2013.06.112

    Article  Google Scholar 

  4. M. Zhu, G. Carta, Adsorption of polyethylene-glycolated bovine serum albumin on macroporous and polymer-grafted anion exchangers. J. Chromatogr. A 1326, 29–38 (2014). doi:10.1016/j.chroma.2013.12.007

    Article  Google Scholar 

  5. F.N. Topchieva, N.V. Efremova, Conjugates of Proteins with Block Co-polymers of Ethylene and Propylene Oxides. Biotechnol. Genet. Eng. Rev. 12, 357–382 (1994). doi:10.1080/02648725.1994.10647916

    Article  Google Scholar 

  6. F. Zhang, E.T. Kang, K.G. Neoh et al., Modification of gold surface by grafting of poly(ethylene glycol) for reduction in protein adsorption and platelet adhesion. J. Biomater. Sci. Polym. E. 12, 515–531 (2001). doi:10.1163/156856201300194252

  7. B. Dong, H. Jiang, S. Manolache et al., Plasma-mediated grafting of poly(ethylene glycol) on polyamide and polyester surfaces and evaluation of antifouling ability of modified substrates. Langmuir 23, 7306–7313 (2007). doi:10.1021/la0633280

    Article  Google Scholar 

  8. F.J. Xu, K.G. Neoh, E.T. Kang, Bioactive surfaces and biomaterials via atom transfer radical polymerization. Prog. Polym. Sci. 34, 719–761 (2009). doi:10.1016/j.progpolymsci.2009.04.005

    Article  Google Scholar 

  9. M.Y. Bai, S.Z. Liu, A simple and general method for preparing antibody- PEG-PLGA sub-micron particles using electrospray technique: an in vitro study of targeted delivery of cisplatin to ovarian cancer cells. Colloids Surf. B 117, 346–353 (2014). doi:10.1016/j.colsurfb.2014.02.051

    Article  Google Scholar 

  10. A. Larsson, T. Ekblad, O. Andersson et al., Photografted poly(ethylene glycol) matrix for affinity interaction studies. Biomacromolecules 8, 287–295 (2007). doi:10.1021/bm060685g

    Article  Google Scholar 

  11. F. Brétagnol, H. Rauscher, M. Hasiwa et al., The effect of sterilization processes on the bioadhesive properties and surface chemistry of a plasma-polymerized polyethylene glycol film: XPS characterization and L929 cell proliferation tests. Acta Biomater. 4, 1745–1751 (2008). doi:10.1016/j.actbio.2008.06.013

    Article  Google Scholar 

  12. F.J. Xu, K.G. Neoh, E.T. Kang, Bioactive surfaces and biomaterials via atom transfer radical polymerization. Prog. Polym. Sci. 34, 719–761 (2009). doi:10.1016/j.progpolymsci.2009.04.005

    Article  Google Scholar 

  13. S. Zanini, C. Riccardi, E. Grimoldi et al., Plasma-induced graft-polymerization polyethylene glycol acrylate on polyproylene films: chemical characterization and evaluation of the protein adsorption. J. Colloid Interface Sci. 341, 53–58 (2010). doi:10.1016/j.jcis.2009.09.012

    Article  Google Scholar 

  14. F. Akman, R. Durak, M.F. Turhan et al., Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Appl. Radiat. Isot. 101, 107–113 (2015). doi:10.1016/j.apradiso.2015.04.001

    Article  Google Scholar 

  15. M.I. Sayyed, Investigation of shielding parameters for smart polymers. Chin. J. Phys. 54, 408–415 (2016). doi:10.1016/j.cjph.2016.05.002

    Article  Google Scholar 

  16. A. Kumar, Studies on effective atomic numbers and electron densities of nucleobases in DNA. Radiat. Phys. Chem. 127, 48–55 (2016). doi:10.1016/j.radphyschem.2016.06.006

    Article  Google Scholar 

  17. T.K. Kumar, K.V. Reddy, Effective atomic numbers for materials of dosimetric interest. Radiat. Phys. Chem. 50, 545–553 (1997). doi:10.1016/s0969-806x(97)00089-3

    Article  Google Scholar 

  18. N. Koç, H. Özyol, Z-dependence of partial and total photon interactions in some biological samples. Radiat. Phys. Chem. 59, 339–345 (2000). doi:10.1016/s0969-806x(00)00299-1

    Article  Google Scholar 

  19. N.G. Nayak, M.G. Vijaya, K. Siddappa, Effective atomic numbers of some polymers and other materials for photoelectric process at 59.54 keV. Radiat. Phys. Chem. 61, 559–561 (2001). doi:10.1016/s0969-806x(01)00332-2

    Article  Google Scholar 

  20. T. Singh, U.Kaur Rajni et al., Photon energy absorption parameters for some polymers. Ann. Nucl. Energy 37, 422–427 (2010). doi:10.1016/j.anucene.2009.12.017

    Article  Google Scholar 

  21. I. Han, M. Aygun, L. Demir et al., Determination of effective atomic numbers for 3d transition metal alloys with a new semi-empirical approach. Ann. Nucl. Energy 39, 56–61 (2012). doi:10.1016/j.anucene.2011.09.008

    Article  Google Scholar 

  22. M.W. Marashdeh, I.F. Al-Hamarneh, E.M. Abdel Munem et al., Determining the mass attenuation coefficient, effective atomic number, and electron density of raw wood and binderless particleboards of Rhizophora spp. by using Monte Carlo simulation. Results Phys. 5, 228–234 (2015). doi:10.1016/j.rinp.2015.08.009

  23. M. Kurudirek, Studies on heavy charged particle interaction, water equivalence and Monte Carlo simulation in some gel dosimeters, water, human tissues and water phantoms. Nucl. Instrum. Methods A 795, 239–252 (2015). doi:10.1016/j.nima.2015.06.001

    Article  Google Scholar 

  24. M. Kurudirek, S. Kurudirek, Collisional, radiative and total electron interaction in compound semiconductor detectors and solid state nuclear track detectors: effective atomic number and electron density. Appl. Radiat. Isot. 99, 54–58 (2015). doi:10.1016/j.apradiso.2015.02.011

    Article  Google Scholar 

  25. M. Kurudirek, Effective atomic numbers, water and tissue equivalence properties of human tissues, tissue equivalents and dosimetric materials for total electron interaction in the energy region 10 keV–1 GeV. Appl. Radiat. Isot. 94, 1–7 (2014). doi:10.1016/j.apradiso.2014.07.002

    Article  Google Scholar 

  26. M. Kurudirek, Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications. Radiat. Phys. Chem. 102, 139–146 (2014). doi:10.1016/j.radphyschem.2014.04.033

    Article  Google Scholar 

  27. S.R. Benhabbour, H. Sheardown, A. Adronov, Protein resistance of PEG-functionalized dendronized surfaces: effect of PEG molecular weight and dendron generation. Macromolecules 41, 4817–4823 (2008). doi:10.1021/ma8004586

    Article  Google Scholar 

  28. B. Dong, S. Manolache, A.C.L. Wong et al., Antifouling ability of polyethylene glycol of different molecular weights grafted onto polyester surfaces by cold plasma. Polym. Bull. 66, 517–528 (2011). doi:10.1007/s00289-010-0358-y

    Article  Google Scholar 

  29. D. Mech, J.S. Sangwai, Effect of molecular weight of polyethylene glycol (PEG), a hydrate inhibitive water-based drilling fluid additive, on the formation and dissociation kinetics of methane hydrate. J. Nat. Gas Sci. Eng. 35, 1–12 (2016). doi:10.1016/j.jngse.2016.06.020

    Article  Google Scholar 

  30. G.C. Lowenthal, P.L. Airey, Practical Applications of Radioactivity and Nuclear Radiations (Cambridge University Press, Cambridge, 2001). doi:10.1017/cbo9780511535376.005

    Book  Google Scholar 

  31. J.H. Hubbell, Photon mass attenuation and energy-absorption coefficients. Int. J. Appl. Radiat. Isot. 33, 1269–1290 (1982). doi:10.1016/0020-708x(82)90248-4

    Article  Google Scholar 

  32. L. Gerward, N. Guilbert, K.B. Jensen et al., WinXCom-a program for calculating x-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004). doi:10.1016/j.radphyschem.2004.04.040

    Article  Google Scholar 

  33. J.H. Hubbell, S.M. Seltzer, Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. NISTIR-5632 (1995)

  34. F. Akman, R. Durak, M.R. Kacal et al., Study of absorption parameters around the K edge for selected compounds of Gd. X-Ray Spectrom. 45, 103–110 (2016). doi:10.1002/xrs.2676

    Article  Google Scholar 

  35. Z. Yalçin, O. İçelli, M. Okutan et al., A different perspective to the effective atomic number (Zeff) for some boron compounds and trommel sieve waste (TSW) with a new computer program ZXCOM. Nucl. Instrum. Methods Phys. Res. A 686, 43–47 (2012). doi:10.1016/j.nima.2012.05.041

    Article  Google Scholar 

  36. M. Taylor, R. Franich, J. Trapp et al., Electron interaction with gel dosimeters: effective atomic numbers for collisional, radiative and total interaction processes. Radiat. Res. 171, 123–126 (2009). doi:10.1667/rr1438.1

    Article  Google Scholar 

  37. A. Perumallu, A.N. Rao, G.K. Rao, Photon interaction measurements of certain compounds in the energy range 30–660 keV. Can. J. Phys. 62, 454–459 (1984). doi:10.1139/p84-064

    Article  Google Scholar 

  38. A. El-Kateb, A. Abdul-Hamid, Photon attenuation coefficient study of some materials containing hydrogen, carbon and oxygen. Int. J. Radiat. Appl. Instrum. 42, 303–307 (1991). doi:10.1016/0883-2889(91)90093-g

    Article  Google Scholar 

  39. K. Singh, H. Singh, V. Sharma et al., Gamma-ray attenuation coefficients in bismuth borate glasses. Nucl. Instrum. Methods B 194, 1–6 (2002). doi:10.1016/s0168-583x(02)00498-6

    Article  Google Scholar 

  40. F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry (Wiley, New York, 1986). doi:10.1002/9783527617135

    Book  Google Scholar 

  41. S.R. Manohara, S.M. Hanagodimath, K.S. Thind et al., On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV. Nucl. Instrum. Methods B 266, 3906–3912 (2008). doi:10.1016/j.nimb.2008.06.034

    Article  Google Scholar 

  42. J.H. Hubbell, S.M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (version 1.4). Radiat. Biomolecular. Phys. Division, PML, NIST (2004). http://physics.nist.gov/xaamdi

  43. K.S. Mann, M.S. Heer, A. Rani, Effect of low-Z absorber’s thickness on gamma-ray shielding parameters. Nucl. Instrum. Methods A 797, 19–28 (2015). doi:10.1016/j.nima.2015.06.013

    Article  Google Scholar 

  44. M. Kurudirek, Effective atomic number, energy loss and radiation damage studies in some materials commonly used in nuclear applications for heavy charged particles such as H, C, Mg, Fe, Te, Pb and U. Radiat. Phys. Chem. 122, 15–23 (2016). doi:10.1016/j.radphyschem.2016.01.012

    Article  Google Scholar 

Download references

Acknowledgements

The authors also thank all members of the Nuclear Science Research Institute at the King Abdulaziz City for Science and Technology in Riyadh, Saudi Arabia, for providing the facilities to conduct the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim F. Al-Hamarneh.

Additional information

The authors thank the Deanship of Scientific Research at Al Imam Mohammad Ibn Saud Islamic University for the grant and financial assistance to accomplish this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hamarneh, I.F., Marashdeh, M.W., Almasoud, F.I. et al. Determination of gamma-ray parameters for polyethylene glycol of different molecular weights. NUCL SCI TECH 28, 157 (2017). https://doi.org/10.1007/s41365-017-0311-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0311-y

Keywords

Navigation