Skip to main content
Log in

Significance of power average of sinusoidal and non-sinusoidal periodic excitations in nonlinear non-autonomous system

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Additional sinusoidal and different non-sinusoidal periodic perturbations applied to the periodically forced nonlinear oscillators decide the maintainance or inhibitance of chaos. It is observed that the weak amplitude of the sinusoidal force without phase is sufficient to inhibit chaos rather than the other non-sinusoidal forces and sinusoidal force with phase. Apart from sinusoidal force without phase, i.e., from various non-sinusoidal forces and sinusoidal force with phase, square force seems to be an effective weak perturbation to suppress chaos. The effectiveness of weak perturbation for suppressing chaos is understood with the total power average of the external forces applied to the system. In any chaotic system, the total power average of the external forces is constant and is different for different nonlinear systems. This total power average decides the nature of the force to suppress chaos in the sense of weak perturbation. This has been a universal phenomenon for all the chaotic non-autonomous systems. The results are confirmed by Melnikov method and numerical analysis. With the help of the total power average technique, one can say whether the chaos in that nonlinear system is to be supppressed or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. F C Moon, Chaotic vibration (Wiley, Chichester, 1987)

    Google Scholar 

  2. J M Ottino, F J Muzzio, M Tjahjadi, J G Franjione, S C Jana, and H A Kusch, Science 257, 754 (1992)

    Article  ADS  Google Scholar 

  3. Y V Andreyev, A S Dmitriev, and D A Kuminov, IEEE Trans. Neur. Net. 7, 290 (1996)

    Article  Google Scholar 

  4. L M Pecora and T L Carroll, Phys. Rev. Lett. 64, 821 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  5. A Garfinkel, M L Spano, W L Ditto, and J N Weiss, Science 257, 1230 (1992)

    Article  ADS  Google Scholar 

  6. S J Schiff, K Jenger, D H Duong, T Chang, M L Spano, and W L Ditto, Nature (London) 370, 615 (1994)

    Article  ADS  Google Scholar 

  7. M Lakshmanan and K Murali, Chaos in non-linear oscillators: Controlling and synchronization (World Scientific, Singapore, 1996)

    MATH  Google Scholar 

  8. E Ott, C Grebogi, and J A Yorke, Phys. Rev. Lett. 64, 1196 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  9. E R Hunt, Phys. Rev. Lett. 67, 1953 (1991)

    Article  ADS  Google Scholar 

  10. E A Jackson, Phys. Lett. A 151, 478 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  11. Y C Lai, M Ding, and C Grebogi, Phys. Rev. E 47, 86 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  12. Andrew Y T Leung and Liu Zengrong, Int. J. Bifurcat. Chaos 14, 2955 (2004)

    Article  Google Scholar 

  13. Tianshu Wang, Xingyuan Wang, and Mingjun Wang, Commun. Nonlinear Sci. Numer. Simulat. 16, 3367 (2011)

    Article  Google Scholar 

  14. R Lima and M Pettini, Phys. Rev. A 41, 726 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  15. Y Braiman and I Goldhirsch, Phys. Rev. Lett. 66, 2545 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  16. Neng-Sheng Pai, Her-Terng Yau, and Xingyuan Wang, Commun. Nonlinear Sci. Numer. Simulat. 16, 133 (2011)

  17. Mohammed Pourmahmood Aghababa and Hasan Pourmahmood Aghababa, Commun. Nonlinear Sci. Numer. Simulat. 17, 3533 (2012)

  18. Song Zhankui and Kaibiao Sun, Commun. Nonlinear Sci. Numer. Simulat. 18, 2540 (2013)

  19. Juntao Li, Wenlin Li, and Qiaoping Li, Commun. Nonlinear Sci. Numer. Simulat. 17, 341 (2012)

  20. Wei Xiang and Fangqi Chen, Commun. Nonlinear Sci. Numer. Simulat. 16, 1 (2011)

  21. Mehdi Sadeghpour, Hassan Salareih, Gholamreza Vossoughi, and Aria Alasty, Commun. Nonlinear Sci. Numer. Simulat. 16, 2397 (2011)

  22. Hassene Gritli, Nahla Khraief, and Safya Belghith, Commun. Nonlinear Sci. Numer. Simulat. 18, 2048 (2013)

  23. S Rajasekar and M Lakshmanan, J. Theor. Biol. 166, 275 (1994)

    Article  Google Scholar 

  24. Ricardo Chacon, Phys. Rev. Lett. 86, 1737 (2001)

    Article  ADS  Google Scholar 

  25. V Ravichandran, V Chinnathambi and S Rajasekar, Physica A 376, 223 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. Ricardo Chacon, Phil. Trans. R. Soc. A: Mathematical, Physical and Engineering Sciences 364, 2335 (2006)

    Article  Google Scholar 

  27. Junzhong Yang, Zhilin Qu, and Gang Hu, Phys. Rev. E 53, 4402 (1996)

  28. G Chen and X Dong, From chaos to order: Perspectives, methodologies and applications (World Scientific, 1998)

  29. G Cicoga and L Fronzoni, Phys. Rev. E 47, 4585 (1993)

    Article  ADS  Google Scholar 

  30. L Fronzoni, M Giocondo, and M Pettini, Phys. Rev. A 43, 6483 (1991)

    Article  ADS  Google Scholar 

  31. A Azvedo and S M Rezende, Phys. Rev. Lett. 66, 1342 (1991)

    Article  ADS  Google Scholar 

  32. Z L Qu, G Hu, G J Yang, and G R Qing, Phys. Rev. Lett. 74, 1736 (1994)

    Article  ADS  Google Scholar 

  33. S Rajasekar, Pramana – J. Phys. 41, 295 (1993)

    Article  ADS  Google Scholar 

  34. V Ravichandran, V Chinnathambi, and S Rajasekar, Pramana – J. Phys. 67, 351 (2006)

    Article  ADS  Google Scholar 

  35. Ying-Cheng Lai, Anil Kandangath, Satish Krishnamoorthy, John A Gaudet, and Alessandro P S de Moura, Phys. Rev. Lett. 94, 214101 (2005)

  36. M Lakshmanan and S Rajasekar, Nonlinear dynamics: Integrability, chaos and patterns (Springer, Berlin, 2003)

    Book  MATH  Google Scholar 

  37. K Srinivasan, K Thamilmaran, and A Venkatesan, J. Chaos, Soliton Fractals 40, 319 (2009)

    Article  ADS  Google Scholar 

  38. K Srinivasan, K Thamilmaran, and A Venkatesan, Int. J. Bifurcat. Chaos 19, 6 (2009)

    MathSciNet  Google Scholar 

  39. Ulrike Feudel, Sergey Kuznetsov, and Arkady Pikovsky, Strange nonchaotic attractors: Dynamics between order and chaos in quasiperiodically forced systems (World Scientific, Singapore, 2006)

  40. C Grebogi, E Ott, S Pelikan, and J A Yorke, Physica D 13, 261 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  41. R Gopal, A Venkatesan, and M Lakshmanan, Chaos 23, 023123 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  42. W L Ditto, M L Spano, H T Savage, S N Rauseo, J Heagy, and E Ott, Phys. Rev. Lett. 65, 5 (1990)

    Article  Google Scholar 

  43. I Blekhman, Vibrational mechanics (World Scientific , Singapore, 2000)

    Book  MATH  Google Scholar 

  44. I Blekhman and P S Landa, Int. J. Non-Linear Mech. 39, 421 (2004)

    Article  ADS  Google Scholar 

  45. P Landa and P Mc Clintock, J. Phys. A: Math. Gen. 33, L433 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  46. John F Lindner, Vivek Kohar, Behnam Kia, Michael Hippke, John G Learned, and William L Ditto, Phys. Rev. Lett. 114, 054101 (2015)

  47. E J Ngamga, A Nandi, R Ramaswamy, M C Romano, M Thiel, and J Kurths, Pramana – J. Phys. 70, 1039 (2008)

    Article  ADS  Google Scholar 

  48. Awadhesh Prasad, Surendra Singh Negi, and Ramakrishna Ramaswamy, Int. J. Bifurcat. Chaos 11, 291 (2001)

  49. Awadhesh Prasad, Bibudhananda Biswal, and Ramakrishna Ramaswamy, Phys. Rev. E 68, 037201 (2003)

  50. G M Shepherd, The synaptic organization of the brain (Oxford Univ. Press, 1990)

  51. J Victor and M Conte, Visual Neurosci. 17, 959 (2000)

    Article  Google Scholar 

  52. Lijian Yang, Wangheng Liu, Ming Yi, Canjun Wang, Qiaomu Zhu, Xuan Zhan, and Ya Jia, Phys. Rev. E 86, 016209 (2012)

  53. V N Chizhevsky, Int. J. Bifurcat. Chaos Appl. Sci. Eng. 18, 1767 (2008)

    Article  Google Scholar 

  54. S Jeyakumari, V Chinnathambi, S Rajasekar, and M A F Sanjuan, Phys. Rev. E 80, 046608 (2009)

    Article  ADS  Google Scholar 

  55. S Jeyakumari, V Chinnathambi, S Rajasekar, and M A F Sanjuan, Chaos 19, 043128 (2009)

    Article  ADS  Google Scholar 

  56. S Rajasekar, S Jeyakumari, V Chinnathambi, and M A F Sanjuan, J. Phys. A: Math. Theor. 43, 465101 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  57. S Jeyakumari, V Chinnathambi, S Rajasekar, and M A F Sanjuan, Int. J. Bifurcat. Chaos 21, 275 (2011)

    Article  Google Scholar 

  58. S Jeevarathinam, S Rajasekar, and M A F Sanjuan, Phys. Rev. E 83, 066205 (2011)

    Article  ADS  Google Scholar 

  59. S Rajasekar, K Abirami, and M A F Sanjuan, Chaos 21, 033106 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  60. K Srinivasan, D V Senthilkumar, R Suresh, K Thamilmaran, and M Lakshmanan, Int. J. Bifurcat. Chaos 19, 4131 (2009)

    Article  Google Scholar 

  61. D V Senthilkumar, K Srinivasan, K Thamilmaran, and M Lakshmanan, Phys. Rev. E 78, 066211 (2008)

    Article  ADS  Google Scholar 

  62. V N Chizhevsky, E Smeu, and G Giacomelli, Phys. Rev. Lett. 91, 220602 (2003)

    Article  ADS  Google Scholar 

  63. V N Chizhevsky and G Giacomelli, Phys. Rev. E 77, 051126 (2008)

    Article  ADS  Google Scholar 

  64. J P Baltanas, L Lopez, I I Blechman, P S Landa, A Zaikin, J Kurths, and M A F Sanjuan, Phys. Rev. E 67, 066119 (2003)

    Article  ADS  Google Scholar 

  65. E Ullner, A Zaikin, J Garcia-Ojalvo, R Bascones, and J Kurths, Phys. Lett. A 312, 348 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  66. R Jothimurugan, K Thamilmaran, S Rajasekar, and M A F Sanjuan, Int. J. Bifurcat. Chaos 23, 1350189 (2011)

    Article  Google Scholar 

  67. Steven H Strogatz, Nonlinear dynamics and chaos: With applications to physics, biology, chemistry and engineering (Westview Press, USA, 1994)

  68. Mauricio Zapateiro, Yolanda Vidal, and Leonardo Acho, Commun. Nonlinear Sci. Numer. Simulat. 19, 991 (2014)

  69. C Koch and I Segev, Methods in neuronal modeling (MIT Press, Cambridge, NA, 1989)

    Google Scholar 

  70. A T Winfree, The geometry of biological time (Springer, Berlin, 1980)

    Book  MATH  Google Scholar 

  71. E C Zuman, Int. J. Neuro Sci. 6, 39 (1973)

    Article  Google Scholar 

  72. R W Clough and J Penzien, Dynamics of structures (McGraw Hill, New York, 1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P R VENKATESH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VENKATESH, P.R., VENKATESAN, A. Significance of power average of sinusoidal and non-sinusoidal periodic excitations in nonlinear non-autonomous system. Pramana - J Phys 87, 3 (2016). https://doi.org/10.1007/s12043-016-1207-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1207-9

Keywords

PACS Nos

Navigation