Skip to main content
Log in

Deformed shell model studies of spectroscopic properties of 64Zn and 64Ni and the positron double beta decay of 64Zn

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The spectroscopic properties of 64Zn and 64Ni are calculated within the framework of the deformed shell model (DSM) based on Hartree-Fock states. GXPF1A interaction in 1f 7/2, 2p 3/2, 1f 5/2 and 2p 1/2 space with 40Ca as the core is employed. After ensuring that DSM gives good description of the spectroscopic properties of low-lying levels in these two nuclei considered, nuclear transition matrix elements (NTME) for the neutrinoless positron double beta decay ( 0ν β + β + and 0ν β +EC) of 64Zn are calculated. The two-neutrino positron double beta decay half-life is also calculated for this nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. H V Klapdor-Kleingrothaus and I V Krivosheina, Mod. Phys. Lett. A 21, 1547 (2006)

    Google Scholar 

  2. A Gando et al, Phys. Rev. Lett. 110, 062502 (2013)

  3. M Auger et al, Phys. Rev. Lett. 109, 032505 (2012)

  4. J Barea, J Kotila and F Iachello, Phys. Rev. C 87, 014315 (2013)

    Google Scholar 

  5. B P Belli et al, J. Phys. G: Nucl. Part. Phys. 38, 115107 (2011)

    Google Scholar 

  6. A S Barabash, P Hubert, A Nachab and V Umatov, Nucl. Phys. A 785, 371 (2007)

    Google Scholar 

  7. C Sáenz et al, Phys. Rev. C 50, 1170 (1994)

  8. http://www.apctp.org/topical/2009/npap2009/Presentations/APCTP_NPAP2009_192_Kim.pdf

  9. R Sahu and S P Pandya, J. Phys. G 14, L165 (1988)

  10. R Sahu and S P Pandya, Nucl. Phys. A 548, 64 (1992)

  11. K C Tripathy and R Sahu, J. Phys. G 20, 911 (1994)

  12. R Sahu and S P Pandya, Nucl. Phys. A 571, 253 (1994)

  13. K C Tripathy and R Sahu, Nucl. Phys. A 597, 177 (1996)

    Google Scholar 

  14. K C Tripathy and R Sahu, Int. J. Mod. Phys. E 11, 531 (2002)

    Google Scholar 

  15. R Sahu and V K B Kota, Phys. Rev. C 66, 024301 (2002)

  16. R Sahu and V K B Kota, Phys. Rev. C 67, 054323 (2003)

  17. S Mishra, R Sahu and V K B Kota, Prog. Theor. Phys. 118, 59 (2007)

    Google Scholar 

  18. T S Kosmas, A Faessler and R Sahu, Phys. Rev. C 68, 054315 (2003)

    Google Scholar 

  19. R Sahu, K H Bhatt and D P Ahalpara, J. Phys. G 16, 733 (1990)

  20. R Sahu, F Šimkovic and A Faessler, J. Phys. G 25, 1159 (1999)

  21. S Mishra, A Shukla, R Sahu and V K B Kota, Phys. Rev. C 78, 024307 (2008)

    Google Scholar 

  22. A Shukla, R Sahu and V K B Kota, Phys. Rev. C 80, 057305 (2009)

    Google Scholar 

  23. R Sahu and V K B Kota, Int. J. Mod. Phys. E 20, 1723 (2011)

    Google Scholar 

  24. J Kotila and F Iachello, Phys. Rev. C 87, 024313 (2013)

    Google Scholar 

  25. V S Kolhinen et al, Phys. Lett. B 684, 17 (2010)

  26. M Honma, T Otsuka, B A Brown and T Mizusaki, Phys. Rev. C 69, 034335 (2004)

    Google Scholar 

  27. D Karlgren et al, Phys. Rev. C 69, 034330 (2004)

  28. R Broda et al, Phys. Rev. C 86, 064312 (2012)

  29. ENSDF Data Base, Brookhaven National Laboratory, USA, http://www.nndc.bnl.gov/ensdf/index.jsp

  30. D von Ehrenstein and J P Schiffer, Phys. Rev. 164, 1374 (1967)

    Google Scholar 

  31. V K B Kota and V Potbhare, Nucl. Phys. A 331, 93 (1979)

  32. J P Schiffer et al, Phys. Rev. Lett. 108, 022501 (2012)

    Google Scholar 

  33. J P Schiffer et al, Phys. Rev. Lett. 100, 112501 (2008)

    Google Scholar 

  34. B P Kay et al, Phys. Rev. C 79, 021301(R) (2009)

  35. G Audi, A H Wapstra and C Thibault, Nucl. Phys. A 729, 337 (2003)

    Google Scholar 

  36. P Domin, S Kovalenko, F Šimkovic and S V Semenov, Nucl. Phys. A 753, 337 (2005)

    Google Scholar 

Download references

Acknowledgements

RS is thankful to UGC and DST for the financial support. RS and VKBK thank F Iachello andMHoroi for useful discussions at European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), Trento, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R SAHU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SAHU, R., KOTA, V.K.B. Deformed shell model studies of spectroscopic properties of 64Zn and 64Ni and the positron double beta decay of 64Zn. Pramana - J Phys 82, 757–767 (2014). https://doi.org/10.1007/s12043-014-0726-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-014-0726-5

Keywords

PACS Nos

Navigation