Skip to main content
Log in

A clean signal for a top-like isosinglet fermion at the Large Hadron Collider

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We predict a clean signal at the Large Hadron Collider (\(\sqrt{s}=\) 14 TeV) for a scenario where there is a top-like, charge + 2/3 vector-like isosinglet fermion. Such a quark, via mixing with the standard model top, can undergo decays via both flavour-changing Z-boson coupling and flavour-changing Yukawa interactions. We concentrate on the latter channel, and study the situation where, following its pair production, the heavy quark pair gives rise to two tops and two Higgs bosons. We show that when each Higgs decays in the \(b\bar{b}\) channel, there can be a rather distinct and background-free signal that can unveil the existence of the vector-like isosinglet quark of this kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Super-Kamiokande Collaboration: Y Fukuda et al, Phys. Rev . Lett. 81, 1562 (1998), hep-ex/9807003

    Article  ADS  Google Scholar 

  2. The CMS Collaboration, arXiv:1207.7235 [hep-ex]; The ATLAS Collaboration, arXiv:1207.7214 [hep-ex]

  3. S Sultansoy and G Unel, Phys. Lett. B 669, 39 (2008), hep-ex/0610064 F del Aguila, J A Aguilar-Saavedra, B C Allanach, J Alwall, Y Andreev, D Aristizabal Sierra, A Bartl, M Beccaria et al, Eur. Phys. J. C 57, 183 (2008), arXiv:0801.1800 [hep-ph] P H Frampton, P Q Hung and M Sher, Phys. Rep. 330, 263 (2000), hep-ph/9903387

  4. N Arkani-Hamed, A G Cohen, E Katz and A E Nelson, J. High Energy Phys. 0207, 034 (2002), hep-ph/0206021 C F Berger, M Perelstein and F Petriello, hep-ph/0512053 T Han, H E Logan, B McElrath and L-T Wang, Phys. Lett. B 563, 191 (2003), Erratum, ibid. B 603, 257 (2004), hep-ph/0302188

  5. G Azuelos, K Benslama, D Costanzo, G Couture, J E Garcia, I Hinchliffe, N Kanaya, M Lechowski et al, Eur. Phys. J. C 39S2, 13 (2005), hep-ph/0402037

    Article  ADS  Google Scholar 

  6. B Zhang and H-q Zheng, Commun. Theor. Phys. 35, 162 (2001), hep-ph/0003065

    Google Scholar 

  7. H-C Cheng, B A Dobrescu and C T Hill, Nucl. Phys. B 589, 249 (2000), hep-ph/9912343

    Article  ADS  Google Scholar 

  8. V D Barger, N Deshpande, R J N Phillips and K Whisnant, Phys. Rev . D 33, 1912 (1986), Erratum, ibid. D 35, 1741 (1987)

    Article  ADS  Google Scholar 

  9. G Barenboim and F J Botella, Phys. Lett. B 433, 385 (1998), hep-ph/9708209

    Article  ADS  Google Scholar 

  10. Y Liao and X Li, Phys. Lett. B 503, 301 (2001), hep-ph/0005063

    Article  ADS  MathSciNet  Google Scholar 

  11. F del Aguila and J Cortes, Phys. Lett. B 156, 243 (1985)

    Article  ADS  Google Scholar 

  12. B Mukhopadhyaya, A Ray and A Raychaudhuri, Phys. Lett. B 186, 147 (1987)

    Article  ADS  Google Scholar 

  13. R Mehdiyev, A Siodmok, S Sultansoy and G Unel, Eur. Phys. J. C 54, 507 (2008), arXiv:0711.1116 [hep-ph]

    Article  ADS  Google Scholar 

  14. S Gopalakrishna, T Mandal, S Mitra and R Tibrewala, Phys. Rev . D 84, 055001 (2011), arXiv:1107.4306 [hep-ph]

    Article  ADS  Google Scholar 

  15. J Alwall, J L Feng, J Kumar and S Su, Phys. Rev . D 84, 074010 (2011), arXiv:1107.2919 [hep-ph]

    Article  ADS  Google Scholar 

  16. F del Aguila, L Ametller, G L Kane and J Vidal, Nucl. Phys. B 334, 1 (1990)

    Article  ADS  Google Scholar 

  17. J A Aguilar-Saavedra, Phys. Rev . D 67, 035003 (2003), Erratum, ibid. D 69, 099901 (2004), hep-ph/0210112

    Article  ADS  Google Scholar 

  18. J A Aguilar-Saavedra, Phys. Lett. B 625, 234 (2005), Erratum, ibid. B 633, 792 (2006), hep-ph/0506187

    Article  ADS  Google Scholar 

  19. A Atre, M Chala and J Santiago, J. High Energy Phys. 1305, 099 (2013), arXiv:1302.0270 [hep-ph]

    Article  ADS  Google Scholar 

  20. J A Aguilar-Saavedra and B M Nobre, Phys. Lett. B 553, 251 (2003), hep-ph/0210360

    Article  ADS  Google Scholar 

  21. A Atre, G Azuelos, M Carena, T Han, E Ozcan, J Santiago and G Unel, J. High. Energy Phys. 1108, 080 (2011), arXiv:1102.1987 [hep-ph]

    Article  ADS  Google Scholar 

  22. R Barbieri and L J Hall, Nucl. Phys. B 319, 1 (1989) R Rattazzi, Nucl. Phys. B 335, 301 (1990)

    Google Scholar 

  23. B Mukhopadhyaya and S Nandi, Phys. Rev . Lett. 66, 285 (1991)

    Article  ADS  Google Scholar 

  24. J A Aguilar-Saavedra, J. High Energy Phys. 0612, 033 (2006), hep-ph/0603200

    Article  ADS  Google Scholar 

  25. G D Kribs, A Martin and T S Roy, Phys. Rev . D 84, 095024 (2011), arXiv:1012.2866 [hep-ph]

    Article  ADS  Google Scholar 

  26. A Azatov, O Bondu, A Falkowski, M Felcini, S Gascon-Shotkin, D K Ghosh, G Moreau and S Sekmen, arXiv:1204.0455 [hep-ph]

  27. G Cacciapaglia, A Deandrea, L Panizzi, N Gaur, D Harada and Y Okada, J. High Energy Phys. 1203, 070 (2012), arXiv:1108.6329 [hep-ph]

    Article  ADS  Google Scholar 

  28. A Azatov and J Galloway, Phys. Rev . D 85, 055013 (2012), arXiv:1110.5646 [hep-ph]

    Article  ADS  Google Scholar 

  29. J Alwall, R Frederix, J-M Gerard, A Giammanco, M Herquet, S Kalinin, E Kou, V Lemaitre et al, Eur. Phys. J. C 49, 791 (2007), hep-ph/0607115

    Article  ADS  Google Scholar 

  30. G C Branco and L Lavoura, Nucl. Phys. B 278, 738 (1986)

    Article  ADS  Google Scholar 

  31. B Mukhopadhyaya and S Nandi, Phys. Rev . D 46, 5098 (1992); Phys. Lett. B 266, 112 (1991) B Mukhopadhyaya, Phys. Rev . D 44, 15 (1991)

  32. F del Aguila and J A Aguilar-Saavedra, hep-ph/9906461 F del Aguila, J A Aguilar-Saavedra and R Miquel, Phys. Rev . Lett. 82, 1628 (1999), hep-ph/9808400

  33. S Matsumoto, M M Nojiri and D Nomura, Phys. Rev . D 75, 055006 (2007), hep-ph/0612249

    Article  ADS  Google Scholar 

  34. I Picek and B Radovcic, Phys. Rev . D 78, 015014 (2008), arXiv:0804.2216 [hep-ph]

    Article  ADS  Google Scholar 

  35. J A Aguilar-Saavedra, J. High Energy Phys. 0911, 030 (2009), arXiv:0907.3155 [hep-ph]

    Article  ADS  Google Scholar 

  36. F J Botella, G C Branco and M Nebot, J. Phys. Conf. Ser. 171, 012058 (2009)

    Article  ADS  Google Scholar 

  37. G Cacciapaglia, A Deandrea, D Harada and Y Okada, J. High Energy Phys. 1011, 159 (2010), arXiv:1007.2933 [hep-ph]

    Article  ADS  Google Scholar 

  38. A Falkowski, Phys. Rev . D 77, 055018 (2008), arXiv:0711.0828 [hep-ph]

    Article  ADS  Google Scholar 

  39. K Kong, M McCaskey and G W Wilson, J. High Energy Phys. 1204, 079 (2012), arXiv:1112.3041 [hep-ph]

    Article  ADS  Google Scholar 

  40. F del Aguila, G L Kane and M Quiros, Phys. Rev . Lett. 63, 942 (1989)

    Article  ADS  Google Scholar 

  41. http://www.lhcnewphysics.org/wiki/images/6/60/Tprime.pdf

  42. K Harigaya, S Matsumoto, M M Nojiri and K Tobioka, arXiv:1204.2317 [hep-ph]

  43. F J Botella, G C Branco and M Nebot, arXiv:1207.4440 [hep-ph]

  44. CDF Collaboration: T Aaltonen et al, Phys. Rev . Lett. 107, 261801 (2011), arXiv:1107.3875 [hep-ex]

    Article  ADS  Google Scholar 

  45. D0 Collaboration: V M Abazov et al, arXiv:1104.4522 [hep-ex]

  46. ATLAS Collaboration: G Aad et al, arXiv:1202.3076 [hep-ex]

  47. CMS Collaboration: S Chatrchyan et al, Phys. Rev . Lett. 107, 271802 (2011), arXiv:1109.4985 [hep-ex]

    Article  ADS  Google Scholar 

  48. A Pukhov, E Boos, M Dubinin, V Edneral, V Ilyin, D Kovalenko, A Kryukov, V Savrin et al, hep-ph/9908288

  49. http://theory.sinp.msu.ru/~pukhov/calchep.html

  50. http://www.hep.phys.soton.ac.uk/~belyaev/comphep/calchep-pyth

  51. T Sjostrand, S Mrenna and P Z Skands, J. High Energy Phys. 0605, 026 (2006), hep-ph/0603175

    Article  ADS  Google Scholar 

  52. http://alpgen.web.cern.ch/alpgen/

Download references

Acknowledgement

The author is grateful to Prof. Biswarup Mukhopadhyaya for suggesting the problem considered here and for constant support throughout the course of this work and to Prof. Asesh Krishna Datta for useful discussions. The author acknowledges technical help from Satyanarayan Mukhopadhaya and Nishita Desai, help from Sanjoy Biswas in writing the code and Monalisa Patra for pointing out an important fact. The author also appreciates the constant support and encouragement from D S Ramana. This work is supported by a grant (SR/WOS-A/PS-04/2009) from the Department of Science and Technology, Government of India, New Delhi, under the WOS-A scheme and partially by funds available for Regional Centre for Accelerator-based Particle Physics, from the Department of Atomic Energy, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AARTI GIRDHAR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

GIRDHAR, A. A clean signal for a top-like isosinglet fermion at the Large Hadron Collider. Pramana - J Phys 81, 975–986 (2013). https://doi.org/10.1007/s12043-013-0618-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0618-0

Keywords

PACS Nos

Navigation