Skip to main content
Log in

Effective thermal conductivity of condensed polymeric nanofluids (nanosolids) controlled by diffusion and interfacial scattering

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Thermal properties of polymeric nanosolids, obtained by condensing the corresponding nanofluids, are investigated using photothermal techniques. The heat transport properties of two sets of polyvinyl alcohol (PVA) based nanosolids, TiO2/PVA and Cu/PVA, prepared by condensing the respective nanofluids, which are prepared by dispersing nanoparticles of TiO2 and metallic copper in liquid PVA, are reported. Two photothermal techniques, the photoacoustic and the photopyroelectric techniques, have been employed for measuring thermal diffusivity, thermal conductivity and specific heat capacity of these nanosolids. The experimental results indicate that thermal conduction in these polymer composites is controlled by heat diffusion through the embedded particles and interfacial scattering at matrix–particle boundaries. These two mechanisms are combined to arrive at an expression for their effective thermal conductivity. Analysis of the results reveals the possibility to tune the thermal conductivity of such nanosolids over a wide range using the right types of nanoparticles and right concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J A Eastman, S U S Choi, S Li, W Yu and L J Thompson, Appl. Phys. Lett. 78, 718 (2001)

    Article  ADS  Google Scholar 

  2. H E Patel, S K Das, T Sundararajan, A S Nair, B George and T Pradeep, Appl. Phys. Lett. 83, 2931 (2003)

    Article  ADS  Google Scholar 

  3. P Keblinski, J A Eastman and D Cahill, Mater. Today 8, 36 (2005)

    Article  Google Scholar 

  4. K Kwak and C Kim, Korea-AUST Rheol. J. 17, 35 (2005)

    Google Scholar 

  5. X Zhang, H Gu and M Fuji, Int. J. Thermophys. 27, 569 (2006)

    Article  ADS  Google Scholar 

  6. S Chandrasekhar and S Suresh, Heat Transfer Engg. 30, 1136 (2009)

    Article  ADS  Google Scholar 

  7. X Q Wang and A S Majumdar, Int. J. Thermal Sci. 46, 1 (2007)

    Article  MATH  Google Scholar 

  8. J C Maxwell, A treatise on electricity and magnetism (Oxford, Clarendon, 1873)

    Google Scholar 

  9. S P Jang and S U S Choi, Appl. Phys. Lett. 84, 4316 (2004)

    Article  ADS  Google Scholar 

  10. W Yu and S U S Choi, J. Nanoparticle Res. 5, 167 (2003)

    Article  Google Scholar 

  11. R Prasher, P E Phelan and P Bhattacharya, Nano Lett. 6, 1529 (2006)

    Article  ADS  Google Scholar 

  12. J Buongiorno et al, J. Appl. Phys. 106, 094312-1 (2009)

    Article  Google Scholar 

  13. L Y Hua, Q Wei and F J Cho, Chin. Phys. Lett. 25, 3319 (2008)

    Article  ADS  Google Scholar 

  14. J Philip and M R Nisha, J. Phys.: Conf. Ser. 214, 012035 (2009)

    Article  Google Scholar 

  15. R Prasher, J. Appl. Phys. 100, 034307-1 (2006)

    Article  Google Scholar 

  16. R Prasher, J. Appl. Phys. 100, 064302-1 (2006)

    Article  Google Scholar 

  17. D A G Bruggerman, The calculation of v arious physical constants of heterogeneous substances, 1. The dielectric constants and conductiv ities of mixtures composed of isotropic substances (Ann Phys, Leipzig, 1935)

  18. C W Nan, R Birringer, D R Clarke and H Gleiter, J. Appl. Phys. 81, 6692 (1997)

    Google Scholar 

  19. S Shabde, K A Hoo and B M Gladysz, J. Mater. Sci. 41, 4061 (2006)

    Article  ADS  Google Scholar 

  20. K M Reddy, C V G Reddy and S V Manorama, J. Solid State Chem. 158, 180 (2001)

    Article  ADS  Google Scholar 

  21. H Zhu, C Zhang and Y Yin, Nanotechnol. 16, 3079 (2005)

    Article  ADS  Google Scholar 

  22. A Rosencwaig, Photoacoustics and photoacoustic spectroscopy (Wiley, New York, 1980)

    Google Scholar 

  23. M J Adams and G F Kirkbright, Analyst. 102, 281 (1977)

    Article  ADS  Google Scholar 

  24. P Charpentier, F Lepoutre and L Bertrand, J. Appl. Phys. 53, 608 (1982)

    Article  ADS  Google Scholar 

  25. K N Madhusoodanan, M R Thomas and J Philip, J. Appl. Phys. 62, 1162 (1987)

    Article  ADS  Google Scholar 

  26. A Mandelis and M M Zver, J. Appl. Phys. 57, 4421 (1985)

    Article  ADS  Google Scholar 

  27. C P Menon and J Philip, Meas. Sci. Technol. 11, 1744 (2000)

    Article  ADS  Google Scholar 

  28. S C Cheng and R I Vachon, Int. J. Heat and Mass Transfer 12, 249 (1969)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology, Government of India (Grant No. SR/NM/NS-30/2010). Two of the authors (MRN and MSJ) thank Cochin University of Science and Technology for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J PHILIP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

NISHA, M.R., JAYALAKSHMY, M.S. & PHILIP, J. Effective thermal conductivity of condensed polymeric nanofluids (nanosolids) controlled by diffusion and interfacial scattering. Pramana - J Phys 81, 849–864 (2013). https://doi.org/10.1007/s12043-013-0605-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0605-5

Keywords

PACS Nos

Navigation