Skip to main content
Log in

Convectively driven flow past an infinite moving vertical cylinder with thermal and mass stratification

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

An analysis is performed to study the unsteady, incompressible, one-dimensional, free convective flow over an infinite moving vertical cylinder under combined buoyancy effects of heat and mass transfer with thermal and mass stratifications. Laplace transform technique is adopted for finding solutions for velocity, temperature and concentration with unit Prandtl and Schmidt numbers. Solutions of unsteady state for larger times are compared with the solutions of steady state. Velocity, temperature and concentration profiles are analysed for various sets of physical parameters. Skin friction, Nusselt number and Sherwood number are shown graphically. It has been found that the thermal as well as mass stratification affects the flow appreciably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  1. E M Sparrow and J L Gregg, Trans. ASME 78, 1823 (1956)

    Google Scholar 

  2. R J Goldstein and D G Briggs, Trans. ASME J. Heat Transfer 86, 490 (1964)

    Article  Google Scholar 

  3. G A Bottemanne, Appl. Sci. Res. 25, 372 (1972)

    Article  Google Scholar 

  4. T S Chen and C F Yuh, Int. J. Heat Mass Transfer 23, 451 (1980)

    Article  MATH  Google Scholar 

  5. J Heckel, T S Chen and B F Armaly, Int. J. Heat Mass Transfer 32, 1431 (1989)

    Article  MATH  Google Scholar 

  6. R S R Gorla, Int. J. Engg. Sci. 27, 77 (1989)

    Article  MATH  Google Scholar 

  7. K Velusamy and V K Garg, Int. J. Heat Mass Transfer 35, 1293 (1992)

    Article  Google Scholar 

  8. P Ganesan and H P Rani, Heat Mass Transfer 33, 449 (1998)

    Article  ADS  Google Scholar 

  9. P Ganesan and P Loganathan, Acta Mech. 150, 179 (2001)

    Article  MATH  Google Scholar 

  10. P Ganesan and P Loganathan, Heat Mass Transfer 37, 59 (2001)

    Article  ADS  Google Scholar 

  11. P Ganesan and P Loganathan, J. Eng. Phys. Thermophys. 75, 899 (2002)

    Article  Google Scholar 

  12. H P Rani, Heat Mass Transfer 40, 67 (2003)

    Article  ADS  Google Scholar 

  13. A Shapiro and E Fedorovich, J. Fluid Mech. 498, 333 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. P Loganathan and P Ganesan, J. Eng. Phys. Thermophys. 79, 73 (2006)

    Article  Google Scholar 

  15. H S Takhar, A J Chamkha and G Nath, Heat Mass Transfer 38, 17 (2001)

    Article  ADS  Google Scholar 

  16. C Y Cheng, Int. Comm. Heat and Mass Transfer 36, 351 (2009)

    Article  Google Scholar 

  17. R K Deka and A Paul, Trans. ASME J. Heat Transfer 134, 042503-1 (2012)

    Article  Google Scholar 

  18. R K Deka and A Paul, J. Mech. Sci. Technol. 26(8), 2229 (2012)

    Article  Google Scholar 

  19. P K Kundu, Fluid mechanics, 3rd edn (Elsevier Academic Press, USA, 1990)

    MATH  Google Scholar 

  20. H S Carslaw and J C Jaeger, Operational methods in applied mathematics, 2nd edn (Oxford Press, UK, 1948)

    MATH  Google Scholar 

  21. A K Kulkarni, H R Jacobs and J J Hwang, Int. J. Heat Mass Transfer 30(4), 691 (1987)

    Article  Google Scholar 

  22. H S Carslaw and J C Jaeger, Conduction of heat in solids, 2nd edn (Oxford Press, UK, 1959)

    Google Scholar 

Download references

Acknowledgements

One of the authors (R K Deka) acknowledges the support from the University Grants Commission, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ASHISH PAUL.

Appendix

Appendix

We have the Laplace transformation of U as

$$ \begin{array}{rll} \bar{U} &=&\frac{1}{2}\left\{ {\frac{K_0 \!\left( {R\sqrt {p+iM} } \right)}{pK_0\! \left( {\sqrt {p+iM} } \right)}+\frac{K_0\! \left( {R\sqrt {p-iM} } \right)}{pK_0\! \left( {\sqrt {p-iM} } \right)}} \right\}\\[8pt] &&-\,\frac{{\rm Gr}+{\rm Gc}}{2iM}\left\{ {\frac{K_0\! \left( {R\sqrt {p+iM} } \right)}{pK_0 \!\left( {\sqrt {p+iM} } \right)}-\frac{K_0\! \left( {R\sqrt {p-iM} } \right)}{pK_0\! \left( {\sqrt {p-iM} } \right)}} \right\} \end{array} $$

which then can be expressed in terms of inverse Laplace transform as

$$ U=\frac{1}{2}\left( {1+\frac{{\rm Gr}+{\rm Gc}}{iM}} \right){\rm e}^{iM}I_1 +\frac{1}{2}\left( {1-\frac{{\rm Gr}+{\rm Gc}}{iM}} \right){\rm e}^{-iM}I_2, $$

where

$$ I_1 =L^{-1}\left\{ {\frac{K_0\! \left( {R\sqrt p } \right)}{\left( {p+iM} \right)\!K_0\! \left( {\sqrt p } \right)}} \right\} $$

and

$$ I_2 =L^{-1}\left\{ {\frac{K_0\! \left( {R\sqrt p } \right)}{\left( {p-iM} \right)\!K_0 \!\left( {\sqrt p } \right)}} \right\}. $$

Now, we apply complex inversion formula for determining I 1 and I 2 as follows:

$$ I_1 =\frac{1}{2\pi i}\int_{\gamma ^{\prime} -i\infty }^{\gamma ^{\prime} +i\infty } {{\rm e}^{pt}\frac{K_0\! \left( {R\sqrt p } \right)}{\left( {p+iM} \right)\!K_0\!\left( {\sqrt p } \right)}{\rm d}p} =\sum {{\rm sum}\;{\rm of}\;{\rm residues}} , $$

where the integrand has a branch point at p = 0 and a simple pole at p = − iM.

Now \(K_0( {\sqrt p })\) does not have zero at any point in the real and imaginary axes, if the branch cut is made along the negative real axis. To obtain I 1, we use the adjoining Bromwich contour (figure 20). Therefore, the line integral in I 1 may be replaced by the limit of the sum of the integrals over FE, ED, DC, CB and BA as S 1 → ∞ and S 0 →0.

Figure 20
figure 20

Bromwich contour of integration.

Here, the particular form of the contour integral has been chosen because the values along the paths DC, BA and FE approach zero as S 1 → ∞ and S 0 →0.

Following Carslaw and Jaeger [20, 22], along the paths CB and ED we choose, p = V 2e and p = V 2e − , respectively.

Therefore, on the path CB,

$$ I_1 \left( {{\rm along}\;{\rm CB}} \right)=\frac{1}{\pi i}\int_0^\infty {{\rm e}^{-V^2t}\frac{J_0\!\left( {RV} \right)-iY_0\! \left( {RV} \right)}{\left( {V^2-iM} \right)\left\{ {J_0\! \left( V \right)-iY_0\! \left( V \right)} \right\}}V{\rm d}V} $$

and on the path ED,

$$ I_1 \left( {{\rm along}\;{\rm ED}} \right)=\frac{1}{\pi i}\int_0^\infty {{\rm e}^{-V^2t}\frac{J_0\! \left( {RV} \right)+iY_0 \!\left( {RV} \right)}{\left( {V^2-iM} \right)\left\{ {J_0 \!\left( V \right)+iY_0\! \left( V \right)} \right\}}V{\rm d}V} . $$

Adding the above two integrals, we get

$$ I_1 \left( {{\rm along}\;{\rm CB}+{\rm ED}} \right)=\frac{2}{\pi }\int_0^\infty {\left\{ {\frac{{\rm e}^{-V^2t}}{V^2-iM}\Gamma\! \left( {R,V} \right)\!V} \right\}{\rm d}V} , $$

where

$$ \Gamma\! \left( {R,V} \right)=\frac{J_0\! \left( {RV} \right)\!Y_0\! \left( V \right)-Y_0\! \left( {RV} \right)\!J_0\! \left( V \right)}{J_0^2\! \left( V \right)+Y_0^2\! \left( V \right)}. $$

Also, the residue of the integrand I 1 at the pole \(p=-iM\;{\rm is}={\rm e}^{-iM}[ K_0 ( {R\sqrt {-iM} } ) / {K_0 ( {\sqrt {-iM} } )} ]\).

Thus, from the theory of residues we have,

$$ I_1 =\frac{2}{\pi }\int_0^\infty {\left\{ {\frac{{\rm e}^{-V^2t}}{V^2-iM}\Gamma\! \left( {R,V} \right)\!V} \right\}{\rm d}V} +{\rm e}^{-iM}\frac{K_0 \!\left( {R\sqrt {-iM} } \right)}{K_0 \!\left( {\sqrt {-iM} } \right)}. $$

Similarly,

$$ I_2 =\frac{2}{\pi }\int_0^\infty {\left\{ {\frac{{\rm e}^{-V^2t}}{V^2+iM}\Gamma \!\left( {R,V}\! \right)\!V} \right\}{\rm d}V} +{\rm e}^{iM}\frac{K_0 \big( {R\sqrt {iM} } \big)}{K_0 \big( {\sqrt {iM} } \big)}. $$

Finally, we have,

$$ \begin{array}{rll} U&=&\frac{1}{2}\left\{ {\frac{K_0 \!\left( {R\sqrt {-iM} } \right)}{K_0 \!\left( {\sqrt {-iM} } \right)}+\frac{K_0 \big( {R\sqrt {iM} } \big)}{K_0 \big( {\sqrt {iM} } \big)}} \right\}\\ &&+\,\frac{{\rm Gr}+{\rm Gc}}{2Mi}\left\{ {\frac{K_0\! \left( {R\sqrt {-iM} } \right)}{K_0 \!\left( {\sqrt {-iM} } \right)}-\frac{K_0 \big( {R\sqrt {iM} } \big)}{K_0 \big( {\sqrt {iM} } \big)}} \right\}\\ &&+\,\frac{2\left( {{\rm Gr}+{\rm Gc}} \right)}{\pi M}\int_0^\infty {\frac{{\rm e}^{-V^2t}\!\left\{ {V^2\sin \!\left( {Mt} \right)+M\cos \!\left( {Mt} \right)} \right\}}{V^4+M^2}\Gamma \!\left( {R,V} \right)\!V{\rm d}V} \\ &&+\,\frac{2}{\pi }\int_0^\infty {\frac{{\rm e}^{-V^2t}\left\{ {V^2\cos\! \left( {Mt} \right)-M\sin\! \left( {Mt} \right)} \right\}}{V^4+M^2}\Gamma\! \left( {R,V} \right)\!V{\rm d}V} . \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

DEKA, R.K., PAUL, A. Convectively driven flow past an infinite moving vertical cylinder with thermal and mass stratification. Pramana - J Phys 81, 641–665 (2013). https://doi.org/10.1007/s12043-013-0604-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0604-6

Keywords

PACS Nos

Navigation