Skip to main content
Log in

The isospin mixing and the superallowed Fermi beta decay

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the present work, the isospin admixtures in the nuclear ground states of the parent nuclei and isospin structure of the isobar analog resonance (IAR) states have been investigated by studying the 0 + →0 +  superallowed Fermi β decays using Pyatov’s restoration method. Within the random phase approximation (RPA), in this method, the effect of isospin breaking due to the Coulomb forces has been evaluated, taking into account the effect of pairing correlations between nucleons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R J Blin-Stoyle, Isospin in nuclear physics edited by D H Wilkinson (North-Holland, Amsterdam, 1969) pp. 115–172

  2. I S Towner and J C Hardy, Nucl. Phys. A205, 33 (1973)

    ADS  Google Scholar 

  3. D H Wilkinson, Phys. Lett. 65B, 9 (1976)

    ADS  Google Scholar 

  4. J C Hardy and I S Towner, Nucl. Phys. A254, 221 (1975)

    ADS  Google Scholar 

  5. I S Towner, J C Hardy and M Harvey, Nucl. Phys. A284, 269 (1977)

    ADS  Google Scholar 

  6. W E Ormand and B A Brown, Phys. Rev. Lett. 62, 866 (1989)

    Article  ADS  Google Scholar 

  7. F C Barker, Nucl. Phys. A537, 134 (1992)

    ADS  Google Scholar 

  8. F C Barker, Nucl. Phys. A579, 62 (1994)

    ADS  Google Scholar 

  9. D H Wilkinson, Nucl. Instrum. Methods A335, 201 (1993)

    Article  ADS  Google Scholar 

  10. W E Ormand and B A Brown, Phys. Rev. C52, 2455 (1995)

    ADS  Google Scholar 

  11. H Sagava, N Van Giai and T Suzuki, Phys. Rev. C53, 2163 (1996)

    ADS  Google Scholar 

  12. P Navrátil, B R Barrett and W E Ormand, Phys. Rev. C56, 2542 (1997)

    ADS  Google Scholar 

  13. D H Wilkinson, Nucl. Instrum. Methods A488, 654 (2002)

    ADS  Google Scholar 

  14. I S Towner and J C Hardy, Phys. Rev. C66, 035501 (2002)

    ADS  Google Scholar 

  15. J C Hardy and I S Towner, Phys. Rev. C71, 055501 (2005)

    ADS  Google Scholar 

  16. I S Towner and J C Hardy, Phys. Rev. C77, 025501 (2008)

    ADS  Google Scholar 

  17. H Liang, N Van Giai and J Meng, arXiv:0904.3673v2 [nucl-th]

  18. J C Hardy and I S Towner, Phys. Rev. C79, 055502 (2009)

    ADS  Google Scholar 

  19. A E Çalık, M M Gerçeklioǧlu and D I Salamov, Z. Naturforsch. 64a, 865 (2009)

    Google Scholar 

  20. J C Hardy and I S Towner, Nucl. Phys. A844, 138c (2010)

    ADS  Google Scholar 

  21. G F Grinyer, C E Svensson and B A Brown, Nucl. Instrum. Methods A622, 236 (2010)

    ADS  Google Scholar 

  22. N Auerbach, Phys. Rev. C79, 035502 (2009)

    ADS  Google Scholar 

  23. I Hamamoto and H Sagawa, Phys. Rev. C48, 960 (1993)

    ADS  Google Scholar 

  24. J Dobaczewski and I Hamamoto, Phys. Lett. B345, 181 (1995)

    ADS  Google Scholar 

  25. G Colò, M A Nagarajan, P Van Isacker and A Vitturi, Phys. Rev. C52, R1175 (1995)

    ADS  Google Scholar 

  26. T Suzuki, H Sagawa and G Colò, Phys. Rev. C54, 2954 (1996)

    ADS  Google Scholar 

  27. H Sagawa, P F Bortignon and G Colò, Phys. Lett. B444, 1 (1998)

    ADS  Google Scholar 

  28. H Feschbach, Annu. Rev. Nucl. Sci. 8, 44 (1958)

    ADS  Google Scholar 

  29. H Feschbach, Ann. Phys. 19, 287 (1962)

    Article  ADS  Google Scholar 

  30. M Kicińska-Habior, Acta Phys. Pol. B36, 1133 (2005)

    Google Scholar 

  31. W Satula et al, arXiv:1010.3099v1 [nucl-th]

  32. N Auerbach, Phys. Rep. 98, 273 (1983)

    Article  ADS  Google Scholar 

  33. A Bohr and B R Mottelson, Nuclear structure (Benjamin, New York, 1969) Vol. 1

    Google Scholar 

  34. D F Zaretskii and M G Urin, Zh. Eksp. Teor. Fiz. 53, 324 (1967), [Sov. Phys. JETP 26, 217 (1968)]

    Google Scholar 

  35. Yu V Gaponov and Yu S Lyutostanskii, Yad. Fiz. 16, 484 (1972), [Sov. J. Nucl. Phys. 16, 270 (1973)]

  36. S A Fajans, Phys. Lett. B37, 155 (1971)

    ADS  Google Scholar 

  37. B L Birbrair and V A Sadovnikova, Yad. Fiz. 20, 645 (1974), [Sov. J. Nucl. Phys. 20, 347 (1975)]

    Google Scholar 

  38. N I Pyatov et al, Sov. J. Nucl. Phys. 29, 10 (1979)

    Google Scholar 

  39. T Babacan et al, J. Phys. G30, 759 (2004)

    ADS  Google Scholar 

  40. N I Pyatov and D I Salamov, Nukleonika 22, 127 (1977)

    Google Scholar 

  41. A Kucukbursa, D I Salamov, T Babacan and H A Aygör, Pramana – J. Phys. 63, 947 (2004)

    Article  ADS  Google Scholar 

  42. D I Salamov et al, Pramana – J. Phys. 66, 1105 (2006)

    Article  ADS  Google Scholar 

  43. T Babacan, D I Salamov and A Kucukbursa, Nucl. Phys. A788, 279 (2007)

    ADS  Google Scholar 

  44. V G Soloviev, Theory of complex nuclei (Pergamon, New York, 1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A E ÇALIK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ÇALIK, A.E., GERÇEKLİOǦLU, M. & SALAMOV, D.I. The isospin mixing and the superallowed Fermi beta decay. Pramana - J Phys 79, 417–426 (2012). https://doi.org/10.1007/s12043-012-0329-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0329-y

Keywords

PACS Nos

Navigation