Skip to main content
Log in

Deformation effects on isospin mixing and isobar analogue resonance for 74−80Kr isotopes

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

Pyatov’s method has been applied to investigate Fermi beta transitions in deformed 74–80Kr isotopes. This self-consistent method, which was used to study the isobar analogue states in the spherical odd-odd nuclei, has to date not been applied for the isobar analogue states in deformed nuclei. The nucleon-nucleon residual interaction has been included so that the broken isospin symmetry in the mean field approximation has been restored and the strength parameter of the effective interaction has been taken out to be a free parameter. The energies and wave functions of the isobaric analogue excitations in 74–80Rb isotopes have been obtained within the framework of the pnQRPA method. The probability of the isospin mixing in the ground states and the centroid energies of the isobar analogue resonance have been presented and the deformation effects on these quantities have been quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Blin-Stoyle, Fundamental interactions and the nucleus (Amsterdam, North-Holland, 1973)

    Google Scholar 

  2. S. Raman et al., At. Data Nucl. Data Tables 16, 451 (1975)

    Article  ADS  Google Scholar 

  3. N. Auerbach et al., Rev. Mod. Phys. 44, 48 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  4. A. M. Lane, A. Z. Mekjian, Adv. Nucl. Phys. 7, 97 (1973)

    Article  Google Scholar 

  5. A. Bohr, J. Damgaard, B. R. Mottelson, Nuclear Structure (Amsterdam, North-Holland, 1967)

    Google Scholar 

  6. L. A. Sliv, I. Yu. Kharitonov, Phys.Lett. 16, 176 (1965)

    Article  ADS  Google Scholar 

  7. S. B. Khadkikar, C. S. Warke Nucl. Phys. A 130, 577 (1969)

    Article  ADS  Google Scholar 

  8. I. S. Towner, J. C. Hardy, Nucl. Phys. A 205, 33 (1973)

    Article  ADS  Google Scholar 

  9. I. Hamamoto, H. Sagawa, Phys. Rev. C 48, R960 (1993)

    Article  ADS  Google Scholar 

  10. E. Hagberg et al., Phys. Rev. Lett. 74, 1041 (1995)

    Article  ADS  Google Scholar 

  11. H. Sagawa, Nucl. Phys. A 588, 209c (1995)

    Article  ADS  Google Scholar 

  12. G. Colo et al., Phys. Rev. C 52, R1175 (1995)

    Article  ADS  Google Scholar 

  13. H. Sagawa, N. V. Giai, T. Suzuki, Phys. Rev. C 53, R2163 (1996)

    Article  ADS  Google Scholar 

  14. I. Tanihata, Nucl. Phys. A 522, 275 (1991)

    Article  ADS  Google Scholar 

  15. S. Kubono, Nucl. Phys. 538, 505 (1992)

    Article  Google Scholar 

  16. J. D. Garret Proc. Int. Symp. on Rapidly Rotating Nuclei, Tokyo, 79 (Tokyo, 1992)

    Google Scholar 

  17. R. Schneider et al., Z. Phys. A 348, 241 (1994)

    Article  ADS  Google Scholar 

  18. M. Lewitowicz et al., Phys. Lett. B 332, 20 (1994)

    Article  ADS  Google Scholar 

  19. J. Dobaczewski, I. Hamamoto, Phys. Lett. B 345, 181 (1995)

    Article  ADS  Google Scholar 

  20. D. Wang, W. A. Friedman, Phys. Rev. C 12, 1684 (1975)

    Article  ADS  Google Scholar 

  21. P. Ring, P. Schuck, Nuclear Many Body Problem (Springer-Verlag, New York, 1980)

    Book  Google Scholar 

  22. R. Alvarez-Rodriguez, E. Moya de Guerra, P. Sarriguren, Phys. Rev. C 71, 044308 (2005)

    Article  ADS  Google Scholar 

  23. W. Satula et al., arXiv:0903.1182v1 [nucl-th]

  24. N. I. Pyatov, D. I. Salamov, Nucleonica 22, 127 (1977)

    Google Scholar 

  25. O. Civitarese, M. C. Licciardo, Phys. Rev. C 38, 967 (1988)

    Article  ADS  Google Scholar 

  26. O. Civitarese, M. C. Licciardo, Phys. Rev. C 41, 1778 (1990)

    Article  ADS  Google Scholar 

  27. O. Civitarese, A. Faessler, M. C. Licciardo, Nucl. Phys. A 542, 221 (1992)

    Article  ADS  Google Scholar 

  28. T. Babacan et al., J. Phys. G: Nucl. Part. Phys. 30, 759 (2004)

    Article  ADS  Google Scholar 

  29. A. Kucukbursa et al., Pramana J. Phys. 63, 947 (2004)

    Article  ADS  Google Scholar 

  30. D. I. Salamov et al., Pramana J. Phys. 66, 1105 (2006)

    Article  ADS  Google Scholar 

  31. H. Sakamoto, T. Kishimoto, Nucl. Phys. A 528, 73 (1991)

    Article  ADS  Google Scholar 

  32. M. Cerkaski et al., Phys. Lett. B 70, 9 (1977)

    Article  ADS  Google Scholar 

  33. N. I. Pyatov et al., Sov. Journ. Nucl.Phys. 29, 1 (1979)

    Google Scholar 

  34. J. Dudek, W. Nazarewicz, A. Faessler, Nucl. Phys. A 412, 61 (1984)

    Article  ADS  Google Scholar 

  35. T. Babacan, D. I. Salamov, A. Kucukbursa, Nucl. Phys. A 788, 279c (2007)

    Article  ADS  Google Scholar 

  36. V. G. Soloviev, Theory of Complex Nuclei (Pergamon, New York, 1976)

    Google Scholar 

  37. S. Raman et al., At. Data Nucl. Data Tables 36, 1 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Ünlü.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aygör, H.A., Ünlü, S., Çakmak, N. et al. Deformation effects on isospin mixing and isobar analogue resonance for 74−80Kr isotopes. centr.eur.j.phys. 12, 490–498 (2014). https://doi.org/10.2478/s11534-014-0471-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-014-0471-x

Keywords

Navigation