Skip to main content
Log in

Large-N c quantum chromodynamics and harmonic sums

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the large-N c limit of QCD, two-point functions of local operators become harmonic sums. I review some properties which follow from this fact and which are relevant for phenomenological applications. This has led us to consider a class of analytic number theory functions as toy models of large-N c QCD which also is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G t’ Hooft, Nucl. Phys. B75, 461 (1974)

    Article  ADS  Google Scholar 

  2. C Vafa and E Witten, Nucl. Phys. B72, 461 (1974)

    Google Scholar 

  3. G ’t Hooft, NATO Adv . Study Inst. Ser. B Phys. 59, 135 (1980)

    Google Scholar 

  4. S Coleman and E Witten, Phys. Rev . Lett. 45, 100 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  5. C Vafa and E Witten, Nucl. Phys. B234, 173 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  6. M Knecht, La chromodynamique quantique à basse énergie, cours donné à la 27eme session de l’Ecole d’Eté de Gif, La Chromodynamique Quantique sous toutes ses couleurs, LPC Clermont-Ferrand, 18–22 Sept. 1995, A.-M. Lutz ed., IN2P3

  7. E Witten, Nucl. Phys. B160, 57 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  8. S Weinberg, Physica A96, 327 (1984)

    ADS  Google Scholar 

  9. J Wess and B Zumino, Phys. Lett. B37, 95 (1971)

    MathSciNet  ADS  Google Scholar 

  10. E Witten, Nucl. Phys. B223, 422 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  11. J Gasser and H Leutwyler, Nucl. Phys. B250, 465 (1985)

    Article  ADS  Google Scholar 

  12. G Ecker, J Gasser, A Pich and E de Rafael, Nucl. Phys. B321, 311 (1989)

    Article  ADS  Google Scholar 

  13. T Hambye, S Peris and E de Rafael, J. High Energy Phys. 027, 0305 (2003)

    Google Scholar 

  14. M Knecht and E de Rafael, Phys. Lett. B424, 335 (1998)

    ADS  Google Scholar 

  15. T Das, G S Guralnik, V S Mathur, F E Low and J E Young, Phys. Rev . Lett. 18, 759 (1967)

    Article  ADS  Google Scholar 

  16. M Knecht, S Peris and E de Rafael, Phys. Lett. B443, 255 (1998)

    ADS  Google Scholar 

  17. M A Shifman, A I Vainshtein and V I Zakharov, Nucl. Phys. B147, 385, 447 (1979)

    Article  ADS  Google Scholar 

  18. E Witten, Phys. Rev. Lett. 51, 2351 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  19. J Comellas, J I Latorre and J Tarón, Phys. Lett. B360, 109 (1995)

    ADS  Google Scholar 

  20. A Manohar and G Georgi, Nucl. Phys. B233, 232 (1984)

    Google Scholar 

  21. D Espriu, E de Rafael and J Tarón, Nucl. Phys. B345, 22 (1990)

    Article  ADS  Google Scholar 

  22. S Weinberg, Phys. Rev. Lett. 105, 261601 (2010)

    Article  ADS  Google Scholar 

  23. E de Rafael, Phys. Lett. B703, 60 (2011)

    ADS  Google Scholar 

  24. Y Nambu and G Jona-Lasinio, Phys. Rev. 122, 345 (1961)

    Article  ADS  Google Scholar 

  25. J Bijnens, Ch Bruno and E de Rafael, Nucl. Phys. B390, 501 (1993)

    Article  ADS  Google Scholar 

  26. G Ecker, J Gasser, H Leutwyler, A Pich and E de Rafael, Phys. Lett. B321, 425 (1989)

    ADS  Google Scholar 

  27. V Cirigliano, G Ecker, H Neufeld and A Pich, J. High Energy Phys. 012, 0306 (2003)

    Google Scholar 

  28. E de Rafael, Nucl. Phys. (Proc. Suppl.) B119, 71 (2003)

    Article  ADS  Google Scholar 

  29. S Peris and E de Rafael, Phys. Lett. B490, 213 (2000)

    ADS  Google Scholar 

  30. P Masjuan and S Peris, J. High Energy Phys. 0705, 040 (2007)

    Article  ADS  Google Scholar 

  31. ALEPH Collaboration: R Barate et al, Z. Phys. C76, 15 (1997); ibid, Eur. Phys. J. C4, 409 (1998)

  32. Ph Flajolet, X Gourdon and Ph Dumas, Theor. Comp. Sci. 144, 3 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. S Friot, D Greynat and E de Rafael, Phys. Lett. B628, 73 (2006)

    ADS  Google Scholar 

  34. J-Ph Aguilar, D Greynat and E de Rafael, Phys. Rev . D77, 093010 (2008)

    ADS  Google Scholar 

  35. D Greynat and S Peris, Phys. Rev . D82, 034030 (2010)

    ADS  Google Scholar 

  36. B Blok, M A Shifman and D X Zhang, Phys. Rev. D57, 2691 (1998); Erratum, ibid. D59, 019901 (1999)

  37. M Golterman, S Peris, B Phily and E de Rafael, J. High Energy Phys. 0201, 024 (2002)

    Article  ADS  Google Scholar 

  38. O Catà, M Golterman and S Peris, J. High Energy Phys. 0508, 076 (2005)

    Article  ADS  Google Scholar 

  39. Tom M Apostol, Introduction to analytic number theory, Ch.12 (Springer-Verlag, 1976)

  40. J F Donoghue and E  Golowich, Phys. Lett. 478, 172 (2000)

    Google Scholar 

  41. M Gonzalez-Alonso, A Pich and J Prades, Phys. Rev. D81, 074007 (2010)

    ADS  Google Scholar 

  42. K Maltman et al, arXiv:1110.5562v1 [hep-ph]

  43. Julian Havil, GAMMA, exploring Euler’s constant (Princeton University Press, 2003)

  44. Jeffrey Stopple, A primer of analytic number theoryFrom Pythagoras to Riemann (Cambridge University Press, 2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EDUARDO DE RAFAEL.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DE RAFAEL, E. Large-N c quantum chromodynamics and harmonic sums. Pramana - J Phys 78, 927–946 (2012). https://doi.org/10.1007/s12043-012-0319-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0319-0

Keywords

PACS Nos

Navigation