Skip to main content
Log in

Nonperturbative calculations in the framework of variational perturbation theory in QCD

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We discuss applications of the method based on the variational perturbation theory to perform calculations down to the lowest energy scale. The variational series is different from the conventional perturbative expansion and can be used to go beyond the weak-coupling regime. We apply this method to investigate the Borel representation of the light Adler function constructed from the τ data and to determine the residual condensates. It is shown that within the method suggested the optimal values of these lower dimension condensates are close to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Sissakian and I. L. Solovtsov, Fiz. Elem. Chastits At. Yadra 25, 1127 (1994), 30, 1057 (1999) [Phys. Part. Nucl. 25, 478 (1994), 30, 461 (1999)].

    Google Scholar 

  2. I. L. Solovtsov, Phys. Lett. B 327, 335, 340, 245 (1994).

    Article  ADS  Google Scholar 

  3. H. F. Jones and I. L. Solovtsov, Phys. Lett. B 349, 519 (1995).

    Article  ADS  Google Scholar 

  4. K. A. Milton and I. L. Solovtsov, Mod. Phys. Lett. A 16, 2213 (2001).

    Article  ADS  Google Scholar 

  5. I. L. Solovtsov, in Proceedings of the XVIII International Baldin Seminar on High Energy Physics Problems (ISHEPP XVIII), Dubna, 2006 (Dubna, JINR, 2006), Vol. 1, p.28.

    Google Scholar 

  6. O. P. Solovtsova, Yad. Fiz. 76, 1356 (2013) [Phys. Atom. Nucl. 76, 1295 (2013)].

    Google Scholar 

  7. O. P. Solovtsova, Nucl. Phys. Proc. Suppl. 189, 72 (2009).

    Article  ADS  Google Scholar 

  8. O. Solovtsova, PoS (QFTHEP 2013)057.

    Google Scholar 

  9. D. V. Shirkov and I. L. Solovtsov, Phys. Rev. Lett. 79, 1209 (1997).

    Article  ADS  Google Scholar 

  10. K. A. Milton, I. L. Solovtsov, and O. P. Solovtsova, Mod. Phys. Lett. A 21, 1355 (2006).

    Article  ADS  Google Scholar 

  11. M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 147, 385, 448, 519 (1979).

    Article  Google Scholar 

  12. L. J. Reinders, H. Rubinstein, and S. Yazaki, Phys. Rep. 127, 1 (1985).

    Article  ADS  Google Scholar 

  13. S. Narison, Nucl. Part. Phys. Proc. 258–259, 189 (2015).

    Article  Google Scholar 

  14. S. Schael et al. (ALEPH Collab.), Phys. Rept. 421, 191 (2005).

    Article  ADS  Google Scholar 

  15. S. L. Adler,Phys. Rev. D 10, 3714 (1974).

    Article  ADS  Google Scholar 

  16. E. C. Poggio, H. R. Quinn, and S. Weinberg, Phys. Rev. D 13, 1958 (1976).

    Article  ADS  Google Scholar 

  17. S. L. Adler, Adventures in Theoretical Physics: Selected Papers with Commentaries (World Sci., Singapore, 2006), hep-ph/0505177.

    Book  MATH  Google Scholar 

  18. S. Peris, M. Perrottet, and E. de Rafael, JHEP 9805, 011 (1998).

    Article  ADS  Google Scholar 

  19. S. Eidelman, F. Jegerlehner, A. L. Kataev, and O. Veretin, Phys. Lett. B 454, 369 (1999).

    Article  ADS  Google Scholar 

  20. K. A. Milton, I. L. Solovtsov, and O. P. Solovtsova, Phys. Rev. D 64, 016005 (2001).

    Article  ADS  Google Scholar 

  21. A. N. Sissakian, I. L. Solovtsov, and O. P. Solovtsova, Pis’ma ZhETF 73, 186 (2001) [JETP Lett. 73, 166 (2001)].

    Google Scholar 

  22. A. E. Dorokhov, Phys. Rev. D 70, 094011 (2004).

    Article  ADS  Google Scholar 

  23. A. L. Kataev, Phys. Lett. B 668, 350 (2008).

    Article  ADS  Google Scholar 

  24. F. Jegerlehner, Nucl. Phys. B Proc. Suppl. 181–182, 135 (2008).

    Article  Google Scholar 

  25. P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Phys. Rev. Lett. 101, 012002 (2008).

    Article  ADS  Google Scholar 

  26. B. A. Magradze, Few Body Syst. 48, 143 (2010); 53, 365 (Erratum) (2012).

    Article  ADS  Google Scholar 

  27. T. Goecke, C. S. Fischer, and R. Williams, Phys. Lett. B 704, 211 (2011).

    Article  ADS  Google Scholar 

  28. P. A. Baikov, K. G. Chetyrkin, J. H. Kühn, and J. Rittinger, Phys. Lett. B 714, 62 (2012).

    Article  ADS  Google Scholar 

  29. A. Francis, G. Herdoiza, and H. Horch, PoS (LATTICE, 2014)163.

    Google Scholar 

  30. K.G. Chetyrkin, S. Narison, and V. I. Zakharov, Nucl. Phys. B 550, 353 (1999).

    Article  ADS  Google Scholar 

  31. V. I. Shevchenko and Yu. A. Simonov, Phys. Rev. D 70, 074012 (2004).

    Article  ADS  Google Scholar 

  32. S. Narison, Nucl. Phys. B Proc. Suppl. 164, 225 (2007).

    Article  ADS  Google Scholar 

  33. T. Appelquist and H. D. Politzer, Phys. Rev. Lett. 34, 43 (1975); Phys. Rev. D 12, 1404 (1975).

    Article  ADS  Google Scholar 

  34. J. Schwinger, Particles, Sources, and Fields (Addison-Wesley, New York, 1973; Perseus, 1998), Vol.2.

  35. D. V. Shirkov and I. L. Solovtsov, Teor.Mat. Fiz. 150, 152 (2007) [Theor.Math. Phys. 150, 132 (2007)].

  36. K. A. Milton and I. L. Solovtsov, Phys. Rev. D 59, 107701 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Solovtsova.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovtsova, O.P. Nonperturbative calculations in the framework of variational perturbation theory in QCD. Phys. Atom. Nuclei 80, 781–785 (2017). https://doi.org/10.1134/S1063778817040263

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778817040263

Navigation