Skip to main content
Log in

String cosmology in LRS Bianchi type-II dusty Universe with time-decaying vacuum energy density Λ

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A model of a cloud formed by massive strings is used as a source of LRS Bianchi type-II with time-decaying vacuum energy density Λ. To construct string cosmological models, we have used the energy–momentum tensor for such strings as formulated by Letelier (1983). The high nonlinear field equations have been solved for two types of strings: (i) massive string and (ii) Nambu string. The expansion θ in the model is assumed to be proportional to the shear σ. This condition leads to A = βB m, where A and B are the metric coefficients, m is a constant and β is an integrating constant. Our models are in accelerating phase which is consistent with the recent observations of supernovae type-Ia. The physical and geometrical behaviour of these models are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T W B Kibble, J. Phys. A: Math. Gen. 9, 1387 (1976)

    Article  ADS  Google Scholar 

  2. T W B Kibble, Phys. Rep. 67, 183 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  3. Ya B Zel’dovich, I Yu Kobzarev and L B Okun, Zh. Eksp. Teor. Fiz. 67, 3 (1975)

    Google Scholar 

  4. Ya B Zel’dovich, I Yu Kobzarev and L B Okun, Sov . Phys.-JETP 40, 1 (1975)

    Google Scholar 

  5. A E Everett, Phys. Rev . 24, 858 (1981)

    ADS  Google Scholar 

  6. A Vilenkin, Phys. Rev . D24, 2082 (1981)

    ADS  Google Scholar 

  7. Ya B Zel’dovich, Mon. Not. R. Astron. Soc. 192, 663 (1980)

    ADS  Google Scholar 

  8. P S Letelier, Phys. Rev . D20, 1249 (1979)

    MathSciNet  Google Scholar 

  9. P S Letelier, Phys. Rev . D28, 2414 (1983)

    MathSciNet  ADS  Google Scholar 

  10. A Banerjee, A K Sanyal and S Chakraborty, Pramana – J. Phys. 34, 1 (1990)

    Article  ADS  Google Scholar 

  11. M K Yadav et al, arXiv:gr-qc/0611032v2 (2006)

  12. B Saha and M Visinescu, arXiv:0803.2414v1 (2008)

  13. B Saha et al, arXiv:0812.1443v1 (2008)

  14. S Perlmutter et al, Astrophys. J. 483, 565 (1997)

    Article  ADS  Google Scholar 

  15. S Perlmutter et al, Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  16. S Perlmutter et al, Astrophys. J. 517, 5 (1999)

    Article  Google Scholar 

  17. A G Riess et al, Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  18. A G Riess et al, Publ. Astron. Soc. Pac. 114, 1284 (2000)

    Article  ADS  Google Scholar 

  19. P M Garnavich et al, Astrophys. J. 493, L53 (1998)

    Article  ADS  Google Scholar 

  20. P M Garnavich et al, Astrophys. J. 509, 74 (1998)

    Article  ADS  Google Scholar 

  21. B P Schmidt et al, Astrophys. J. 507, 46 (1998)

    Article  ADS  Google Scholar 

  22. G Efstathiou et al, Mon. Not. R. Astron. Soc. 330, L29 (2002)

    Article  ADS  Google Scholar 

  23. D N Spergel et al, Astrophys. J. Suppl. Ser. 148, 175 (2003)

    Article  ADS  Google Scholar 

  24. S W Allen et al, Mon. Not. R. Astron. Soc. 353, 457 (2004)

    Article  ADS  Google Scholar 

  25. V Sahni and A A Starobinsky, Int. J. Mod. Phys. D9, 373 (2000)

    ADS  Google Scholar 

  26. P J E Peebles and B Ratra, Rev . Mod. Phys. 75, 559 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. T Padmanabhan, Phys. Rep. 380, 235 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. J A S Lima and J M F Maia, Phys. Rev . D49, 5579 (1994)

    Google Scholar 

  29. A G Riess et al, Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  30. R K Knop et al, Astrophys. J. 598, 102 (2003)

    Article  ADS  Google Scholar 

  31. D R K Reddy, Astrophys. Space Sci. 281, 365 (2003)

    Article  ADS  Google Scholar 

  32. D R K Reddy, Astrophys. Space Sci. 300, 381 (2005)

    Article  ADS  Google Scholar 

  33. D R K Reddy and R L Naidu, Astrophys. Space Sci. 307, 395 (2007)

    Article  ADS  Google Scholar 

  34. D R K Reddy, S Rao and M V Rao, Astrophys. Space Sci. 305, 183 (2005)

    Article  ADS  Google Scholar 

  35. D R K Reddy, R L Naidu and V U M Rao, Int. J. Theor. Phys. 46, 1443 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. V U M Rao, M V Santhi and T Vinutha, Astrophys. Space Sci. 314, 73 (2008)

    Article  ADS  Google Scholar 

  37. V U M Rao, T Vinutha and M V Santhi, Astrophys. Space Sci. 314, 213 (2008)

    Article  ADS  Google Scholar 

  38. V U M Rao, T Vinutha and K V S Sireesha, Astrophys. Space Sci. 323, 401 (2009)

    Article  ADS  Google Scholar 

  39. V U M Rao and T Vinutha, Astrophys. Space Sci. 325, 59 (2010)

    Article  ADS  MATH  Google Scholar 

  40. A Pradhan, Fizika B16, 205 (2007)

    Google Scholar 

  41. A Pradhan, Commun. Theor. Phys. 51, 367 (2009)

    Article  ADS  MATH  Google Scholar 

  42. A Pradhan and P Mathur, Astrophys. Space Sci. 318, 255 (2008)

    Article  ADS  Google Scholar 

  43. A Pradhan, H Amirhashchi and M K Yadav, Fizika B18, 35 (2009)

    Google Scholar 

  44. A Pradhan, K Jotania and A Singh, Braz. J. Phys. 38, 167 (2008)

    Article  Google Scholar 

  45. A Pradhan, R Singh and J P Shahi, Elect. J. Theor. Phys. 7, 197 (2010)

    Google Scholar 

  46. A Pradhan, H Amirhashchi and H Zainuddin, Astrophys. Space Sci. DOI: 10.1007/s10509-010-0469-9

  47. H Amirhashchi and H Zainuddin, Elect. J. Theor. Phys. 23, 213 (2010)

    Google Scholar 

  48. H Amirhashchi and H Zainuddin, Fizika B19, 81 (2010)

    Google Scholar 

  49. H Amirhashchi and H Zainuddin, Int. J. Theor. Phys. DOI:10.1007/s10773-010-0474-3

  50. S K Tripathi, S K Nayak, S K Sahu and T R Routray, Astrophys. J. 323, 281 (2009)

    Google Scholar 

  51. S K Tripathi, D Behera and T R Routray, Astrophys. J. 325, 93 (2010)

    Google Scholar 

  52. G Mohanty, R R Sahoo and K L Mahanta, Astrophys. Space Sci. 312, 321 (2007)

    Article  ADS  Google Scholar 

  53. D R K Reddy, Astrophys. Space Sci. 286, 365 (2003)

    Article  ADS  MATH  Google Scholar 

  54. D R K Reddy, Astrophys. Space Sci. 305, 139 (2006)

    Article  ADS  MATH  Google Scholar 

  55. M A H MacCallum, Comm. Math. Phys. 20, 57 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  56. K D Krori, T Chaudhuri, C R Mahanta and A Mazumdar, Gen. Relativ . Grav it. 22, 123 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HASSAN AMIRHASHCHI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AMIRHASHCHI, H., MOHAMADIAN, H. String cosmology in LRS Bianchi type-II dusty Universe with time-decaying vacuum energy density Λ. Pramana - J Phys 78, 651–665 (2012). https://doi.org/10.1007/s12043-012-0258-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0258-9

Keywords

PACS Nos

Navigation