Skip to main content
Log in

Electronic structure and band alignments of \({\mbox{ZnTe} \mathord{\left/ {\vphantom {\mbox{ZnTe} {\mbox{CrTe(0 0 1)}}}} \right. \kern-\nulldelimiterspace} {\mbox{CrTe}}}(0 0 1)\), \({\mbox{CdSe} \mathord{\left/ {\vphantom {\mbox{CdSe} {\mbox{CrTe(0 0 1)}}}} \right. \kern-\nulldelimiterspace} {\mbox{CrTe}}}(0 0 1)\) and \({\mbox{CdTe} \mathord{\left/ {\vphantom {\mbox{CdTe} {\mbox{CrTe(0 0 1)}}}} \right. \kern-\nulldelimiterspace} {\mbox{CrTe}}}(0 0 1)\) interfaces

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

All-electron full potential calculations based on spin density functional theory were performed to study cubic zincblende (ZB) and hexagonal NiAs structures of bulk CrTe and \({\mbox{ZnTe} \mathord{\left/ {\vphantom {\mbox{ZnTe} {\mbox{CrTe(0 0 1)}}}} \right. \kern-\nulldelimiterspace} {\mbox{CrTe}}}(0 0 1)\), \({\mbox{CdTe} \mathord{\left/ {\vphantom {\mbox{CdTe} {\mbox{CrTe(0 0 1)}}}} \right. \kern-\nulldelimiterspace} {\mbox{CrTe}}}(0 0 1)\) and \({\mbox{CdSe} \mathord{\left/ {\vphantom {\mbox{CdSe} {\mbox{CrTe(0 0 1)}}}} \right. \kern-\nulldelimiterspace} {\mbox{CrTe}}}(0 0 1)\) interfaces. The lattice mismatch effect in ZB CrTe and magnetic properties of CrTe in the ideal ZB CrTe structure were investigated. The band alignment properties of the \({\mbox{ZnTe} \mathord{\left/ {\vphantom {\mbox{ZnTe} {\mbox{CrTe(0 0 1)}}}} \right. \kern-\nulldelimiterspace} {\mbox{CrTe}}}(0 0 1)\), \({\mbox{CdTe} \mathord{\left/ {\vphantom {\mbox{CdTe} {\mbox{CrTe(0 0 1)}}}} \right. \kern-\nulldelimiterspace} {\mbox{CrTe}}}(0 0 1)\) and \({\mbox{CdSe} \mathord{\left/ {\vphantom {\mbox{CdSe} {\mbox{CrTe(0 0 1)}}}} \right. \kern-\nulldelimiterspace} {\mbox{CrTe}}}(0 0 1)\) interfaces were computed and a rather large minority valence band offset of about 1.09 eV was observed in\({\mbox{ZnTe} \mathord{\left/ {\vphantom {\mbox{ZnTe} {\mbox{CrTe(0 0 1)}}}} \right. \kern-\nulldelimiterspace} {\mbox{CrTe}}}(0 0 1)\) heterojunction. Also in the\({\mbox{CdTe} \mathord{\left/ {\vphantom {\mbox{CdTe} {\mbox{CrTe(0 0 1)}}}} \right. \kern-\nulldelimiterspace} {\mbox{CrTe}}}(0 0 1)\) and \({\mbox{CdSe} \mathord{\left/ {\vphantom {\mbox{CdSe} {\mbox{CrTe(0 0 1)}}}} \right. \kern-\nulldelimiterspace} {\mbox{CrTe}}}(0 0 1)\) interfaces, the conduction band minimum of minority spin in CrTe was above the conduction band minimum of CdTe and CdSe and so the majority spin electrons could be directly injected to both semiconductors, indicating the possibility of highly efficient spin injection into the CdSe and CdTe semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R A de Groot, F M Mueller, P G van Engen and K H J Buschow, Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  2. K Schwarz, J. Phys. F16, L211 (1986)

    Article  ADS  Google Scholar 

  3. K -I Kobayashi, T Kimura, H Sawada, K Terakura and Y Tokura, Nature (London) 392, 677 (1998)

    Article  ADS  Google Scholar 

  4. W C Kim, K Kawaguchi, N Koshizaki, M Sohma and T Matsumoto, J. Appl. Phys. 93, 8032 (2003)

    Article  ADS  Google Scholar 

  5. R Yamamoto, A Machida, Y Moritomo and A Nakamura, Phys. Rev. B59, R7793 (1999)

    ADS  Google Scholar 

  6. T Shishidou, A J Freeman and R Asahi, Phys. Rev. B64, 180401(R) (2001)

    ADS  Google Scholar 

  7. S Ishida, T Masaki, S Fujii and S Asano, Physica B245, 1 (1998)

    ADS  Google Scholar 

  8. T Plake, M Ramsteiner, V M Kaganer, B Jenichen, M Kastner, L Daweritz and K H Ploog, Appl. Phys. Lett. 80, 2523 (2002) S Sugahara and M Tanaka, ibid. 80, 1969 (2002)

  9. K Ono, J Okabayashi, M Mizuguchi, M Oshima, A Fujimori and H Akinaga, J. Appl. Phys. 91, 8088 (2002)

    Article  ADS  Google Scholar 

  10. H Akinaga, T Manago and M Shirai, Jpn. J. Appl. Phys. 39, L1118 (2000)

    Article  ADS  Google Scholar 

  11. M Mizuguchi, H Akinaga, T Manago, K Ono, M Oshima, M Shirai, M Yuri, H J Lin, H H Hsieh and C T Chen, J. Appl. Phys. 91, 7917 (2002)

    Article  ADS  Google Scholar 

  12. J H Zhao, F Matsukura, K Takamura, E Abe, D Chiba and H Ohno, Appl. Phys. Lett. 79, 2776 (2001)

    Article  ADS  Google Scholar 

  13. P Radhakrishna and J W Cable, Phys. Rev. B54, 11940 (1996)

    ADS  Google Scholar 

  14. S Sanvito and N A Hill, Phys. Rev. B62, 15553 (2000)

    ADS  Google Scholar 

  15. A Continenza, S Picozzi, W T Geng and A J Freeman, Phys. Rev. B64, 085204 (2001) Y J Zhao, W T Geng, A J Freeman and B Delley, ibid. 65, 113202 (2002)

  16. M Shirai, Physica E (Amsterdam) 10, 147 (2000) I Galanakis, Phys. Rev. B66, 012406 (2002)

    Google Scholar 

  17. Y-Q Xu, B-G Liu and D G Pettifor, Phys. Rev. B66, 184435 (2002)

    ADS  Google Scholar 

  18. M G Sreenivasan, X J Hou, K L Teo, M B A Jalil, T Liew and T C Chong, Thin Solid Films 505, 133 (2006)

    Article  ADS  Google Scholar 

  19. M G Sreenivasan, J F Bi, K L Teo and T Liew, J. Appl. Phys. 103, 043908 (2008)

    Article  ADS  Google Scholar 

  20. W-H Xie, Y-Q Xu, B-G Liu and D G Pettifor, Phys. Rev. Lett. 91, 037204 (2003)

    Article  ADS  Google Scholar 

  21. P Blaha, K Schwarz, P Sorantin and S B Trickey, Comput. Phys. Commun. 59, 399 (1990)

    Article  ADS  Google Scholar 

  22. J Perdew, K Burke and M Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  23. F D Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  24. P Mavropoulos, I Galanakis and P H Dederichs, J. Phys. Condens. Matter 16, 4272 (2004)

    Article  Google Scholar 

  25. I Galanakis and P Mavropoulos, Phys. Rev. B67, 104417 (2003)

    ADS  Google Scholar 

  26. E Hazrati, S J Hashemifar and H Akbarzadeh, J. Appl. Phys. 104, 113719 (2008)

    Article  ADS  Google Scholar 

  27. M Peressi, N Binggeli and A Baldereschi, J. Phys. D: Appl. Phys. 31, 1273 (1998)

    Article  ADS  Google Scholar 

  28. S Massidda, B I Min and J Freeman, Phys. Rev. B35, 9871 (1987)

    ADS  Google Scholar 

  29. R Q Wu, G W Peng, L Liu and Y P Feng, J. Phys. Conf. Ser. 29, 150 (2006)

    Article  ADS  Google Scholar 

  30. N Ghaderi, S Hashemifar, H Akbarzadeh and M Peressi, J. Appl. Phys. 102, 074306 (2007)

    Article  ADS  Google Scholar 

  31. S Zarei, S Hashemifar, H Akbarzadeh and Z Haffari, J. Phys. Condens. Matter. 21, 055002 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F AHMADIAN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AHMADIAN, F., ZARE, R. Electronic structure and band alignments of \({\mbox{ZnTe} \mathord{\left/ {\vphantom {\mbox{ZnTe} {\mbox{CrTe(0 0 1)}}}} \right. \kern-\nulldelimiterspace} {\mbox{CrTe}}}(0 0 1)\), \({\mbox{CdSe} \mathord{\left/ {\vphantom {\mbox{CdSe} {\mbox{CrTe(0 0 1)}}}} \right. \kern-\nulldelimiterspace} {\mbox{CrTe}}}(0 0 1)\) and \({\mbox{CdTe} \mathord{\left/ {\vphantom {\mbox{CdTe} {\mbox{CrTe(0 0 1)}}}} \right. \kern-\nulldelimiterspace} {\mbox{CrTe}}}(0 0 1)\) interfaces. Pramana - J Phys 77, 383–394 (2011). https://doi.org/10.1007/s12043-011-0133-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0133-0

Keywords

PACS Nos

Navigation