Skip to main content
Log in

The FP-LAPW/GAM-MPW1K approach: a reliable abinitio method for calculating the band gap of II-VI semiconductors monochalcogenides

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The bandgap of metal monochalcogenides (MMCs) is a key property that governs their physical and chemical properties. Accurate measurement of the bandgap is essential for a range of applications, including optoelectronics and photovoltaics. However, many theoretical approximations fail to accurately calculate the bandgap for MMCs, making it difficult to obtain precise values. This study investigated the suitability of the FP-LAPW/GAM-MPW1K scheme for determining the bandgap of MMCs. The investigation included lattice parameters, bandgap, band structure, and density of states, which were compared against both previous theoretical calculations and available experimental data. The findings of the study indicate that the FP-LAPW/GAM-MPW1K approach accurately calculates the bandgap value of MMCs by efficiently treating d-state electrons. The results are consistent with prior studies, confirming the method's reliability in determining the bandgap of these semiconductors.

Methods

our study used the GAM-MPW1K functional and the full potential linearized augmented plane wave method (FP-LAPW) in the ELK code to calculate the lattice parameters, electronic band structure, and bandgap of ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe compounds in the wurtzite structure. The crystallographic data were obtained from the COD database and the inputs were prepared by CIF2CELL code. The results were visualized using Xmgrace and VESTA software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data could be accessed from the authors upon request.

References

  1. Brédas JL (1994) Molecular geometry and nonlinear optics. Science 263:487–488. https://doi.org/10.1126/science.263.5146.487

    Article  PubMed  Google Scholar 

  2. Erbarut E (2003) Optical response functions of ZnS, ZnSe, ZnTe by the LOM method. Solid State Commun 127:515–519. https://doi.org/10.1016/S0038-1098(03)00349-1

    Article  CAS  Google Scholar 

  3. Yu Y, Zhou J, Han H et al (2009) Ab initio study of structural, dielectric, and dynamical properties of zinc-blende ZnX (X=O, S, Se, Te). J Alloy Compd 471:492–497. https://doi.org/10.1016/j.jallcom.2008.04.039

    Article  CAS  Google Scholar 

  4. Wei S, Lu J, Qian Y (2008) Density functional study of 2D semiconductor CdSe· hda0.5 ( hda = 1,6-hexanediamine) and Its excitonic optical properties. Chem Mater 20:7220–7227. https://doi.org/10.1021/cm703406c

    Article  CAS  Google Scholar 

  5. and, and, (2014) First principle studies of structural, elastic, electronic and optical properties of Zn-chalcogenides under pressure. J Semicond 35:072001. https://doi.org/10.1088/1674-4926/35/7/072001

    Article  CAS  Google Scholar 

  6. Sörgel J, Scherz U (1998) Ab initio calculation of elastic constants and electronic properties of ZnSe and ZnTe under uniaxial strain. Eur Phys J B 5:45–52. https://doi.org/10.1007/s100510050417

    Article  Google Scholar 

  7. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427. https://doi.org/10.1126/science.1069156

    Article  CAS  PubMed  Google Scholar 

  8. Safari M, Izadi Z, Jalilian J et al (2017) Metal mono-chalcogenides ZnX and CdX (X=S, Se and Te) monolayers: chemical bond and optical interband transitions by first principles calculations. Phys Lett A 381:663–670. https://doi.org/10.1016/j.physleta.2016.11.040

    Article  CAS  Google Scholar 

  9. Aras M, Kılıç Ç (2014) Combined hybrid functional and DFT+ U calculations for metal chalcogenides. J Chem Phys 141:044106. https://doi.org/10.1063/1.4890458

    Article  CAS  PubMed  Google Scholar 

  10. Wan Z, Wang Q-D, Liu D, Liang J (2021) Effectively improving the accuracy of PBE functional in calculating the solid band gap via machine learning. Comput Mater Sci 198:110699. https://doi.org/10.1016/j.commatsci.2021.110699

    Article  CAS  Google Scholar 

  11. Nourbakhsh Z (2010) Structural, electronic and optical properties of ZnX and CdX compounds (X=Se, Te and S) under hydrostatic pressure. J Alloy Compd 505:698–711. https://doi.org/10.1016/j.jallcom.2010.06.120

    Article  CAS  Google Scholar 

  12. Saha S, Pal S, Sarkar P et al (2012) A complete set of self-consistent charge density-functional tight-binding parametrization of zinc chalcogenides (ZnX; X=O, S, Se, and Te). J Comput Chem 33:1165–1178. https://doi.org/10.1002/jcc.22945

    Article  CAS  PubMed  Google Scholar 

  13. Khenata R, Bouhemadou A, Sahnoun M et al (2006) Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Comput Mater Sci 38:29–38. https://doi.org/10.1016/j.commatsci.2006.01.013

    Article  CAS  Google Scholar 

  14. Khan I, Ahmad I, Aliabad HAR, Maqbool M (2015) DFT-mBJ studies of the band structures of the II-VI semiconductors. Mater Today: Proc 2:5122–5127. https://doi.org/10.1016/j.matpr.2015.11.008

    Article  Google Scholar 

  15. Singh DJ (1994) Planewaves, Pseudopotentials and the LAPW Method. Springer US, Boston

    Book  Google Scholar 

  16. Yu HS, Zhang W, Verma P et al (2015) Nonseparable exchange–correlation functional for molecules, including homogeneous catalysis involving transition metals. Phys Chem Chem Phys 17:12146–12160. https://doi.org/10.1039/C5CP01425E

    Article  CAS  PubMed  Google Scholar 

  17. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) Adiabatic Connection for Kinetics. J Phys Chem A 104:4811–4815. https://doi.org/10.1021/jp000497z

    Article  CAS  Google Scholar 

  18. Source Forge (2023) The Elk Code. https://sourceforge.net/projects/elk/files/

  19. Lehtola S, Steigemann C, Oliveira MJT, Marques MAL (2018) Recent developments in libxc — A comprehensive library of functionals for density functional theory. SoftwareX 7:1–5. https://doi.org/10.1016/j.softx.2017.11.002

    Article  Google Scholar 

  20. Merkys A, Vaitkus A, Grybauskas A et al (2023) Graph isomorphism-based algorithm for cross-checking chemical and crystallographic descriptions. J Cheminform 15:25. https://doi.org/10.1186/s13321-023-00692-1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vaitkus A, Merkys A, Gražulis S (2021) Validation of the crystallography open database using the crystallographic information framework. J Appl Crystallogr 54:661–672. https://doi.org/10.1107/S1600576720016532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quirós M, Gražulis S, Girdzijauskaitė S et al (2018) Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database. J Cheminform 10:23. https://doi.org/10.1186/s13321-018-0279-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Merkys A, Vaitkus A, Butkus J et al (2016) COD::CIF::Parser : an error-correcting CIF parser for the Perl language. J Appl Crystallogr 49:292–301. https://doi.org/10.1107/S1600576715022396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gražulis S, Merkys A, Vaitkus A, Okulič-Kazarinas M (2015) Computing stoichiometric molecular composition from crystal structures. J Appl Crystallogr 48:85–91. https://doi.org/10.1107/S1600576714025904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gražulis S, Daškevič A, Merkys A et al (2012) Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res 40:D420–D427. https://doi.org/10.1093/nar/gkr900

    Article  CAS  PubMed  Google Scholar 

  26. Gražulis S, Chateigner D, Downs RT et al (2009) Crystallography Open Database – an open-access collection of crystal structures. J Appl Crystallogr 42:726–729. https://doi.org/10.1107/S0021889809016690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Downs RT, Hall-Wallace M (2003) The American Mineralogist crystal structure database. Am Miner 88:247–250

    CAS  Google Scholar 

  28. Björkman T (2011) CIF2Cell: Generating geometries for electronic structure programs. Comput Phys Commun 182:1183–1186. https://doi.org/10.1016/j.cpc.2011.01.013

    Article  CAS  Google Scholar 

  29. Turner PJ (2005) XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR 2. https://plasma-gate.weizmann.ac.il/pub/grace/

  30. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst 44:1272–1276. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  31. Bimberg D (1982) Numerical data and functional relationships in science and technology. Teilbd. a: Gruppe 3: Kristall- und Festkörperphysik = Group 3: @Crystal and solid state physics Bd. 17. Halbleiter Physik der Elemente der IV. Gruppe und der III - V Verbindungen / D. Bimberg. Springer, Berlin Heidelberg

  32. Yadav SK, Sadowski T, Ramprasad R (2010) Density functional theory study of Zn X ( X = O, S, Se, Te ) under uniaxial strain. Phys Rev B 81:144120. https://doi.org/10.1103/PhysRevB.81.144120

    Article  CAS  Google Scholar 

  33. Yu PY, Cardona M (2010) Fundamentals of Semiconductors: Physics and Materials Properties, 4th ed. 2010 edition. Springer, Berlin; New York

  34. Hashir P, Pradyumnan PP, Wani AF, Kaur K (2022) Experimental and first-principles thermoelectric studies of bulk ZnO. IOP Conf Ser: Mater Sci Eng 1263:012025. https://doi.org/10.1088/1757-899X/1263/1/012025

    Article  Google Scholar 

  35. Adachi S, Taguchi T (1991) Optical properties of ZnSe. Phys Rev B 43:9569–9577. https://doi.org/10.1103/PhysRevB.43.9569

    Article  CAS  Google Scholar 

  36. Christensen NE, Christensen OB (1986) Electronic structure of ZnTe and CdTe under pressure. Phys Rev B 33:4739–4746. https://doi.org/10.1103/PhysRevB.33.4739

    Article  CAS  Google Scholar 

  37. Ghahramani E, Moss DJ, Sipe JE (1991) Full-band-structure calculation of first-, second-, and third-harmonic optical response coefficients of ZnSe, ZnTe, and CdTe. Phys Rev B 43:9700–9710. https://doi.org/10.1103/PhysRevB.43.9700

    Article  CAS  Google Scholar 

  38. Sharma S, Verma AS, Sarkar BK et al (2011) First principles study on the elastic and electronic properties of CdX (X = S, Se and Te). pp 229–230.  https://doi.org/10.1063/1.3653693

  39. Lee G-D, Lee MH, Ihm J (1995) Role of d electrons in the zinc-blende semiconductors ZnS, ZnSe, and ZnTe. Phys Rev B 52:1459–1462. https://doi.org/10.1103/PhysRevB.52.1459

    Article  CAS  Google Scholar 

  40. Li ZQ, Pötz W (1992) Electronic density of states of semiconductor alloys from lattice-mismatched isovalent binary constituents. Phys Rev B 46:2109–2118. https://doi.org/10.1103/PhysRevB.46.2109

    Article  CAS  Google Scholar 

  41. Yuriychuk I, Fochuk P, Bolotnikov A, James RB (2019) Ab initio GGA+U investigations of the structural, electronic, and magnetic properties of Cd1-xMnxTe alloy. In: Burger A, James RB, Payne SA (eds) Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXI. SPIE, San Diego, p 65

    Chapter  Google Scholar 

  42. Wu Y, Chen G, Zhu Y et al (2015) LDA+U/GGA+U calculations of structural and electronic properties of CdTe: dependence on the effective U parameter. Comput Mater Sci 98:18–23. https://doi.org/10.1016/j.commatsci.2014.10.051

    Article  CAS  Google Scholar 

  43. Hussain MI, Khalil RMA, Hussain F (2021) Computational exploration of structural, electronic, and optical properties of novel combinations of inorganic Ruddlesden-popper layered perovskites Bi 2 XO 4 (X = Be, Mg) using Tran and Blaha-Modified Becke-Johnson approach for optoelectronic applications. Energy Tech 9:2001026. https://doi.org/10.1002/ente.202001026

    Article  CAS  Google Scholar 

  44. Hussain MI, Khalil RMA, Hussain F, Rana AM (2021) DFT -based insight into the magnetic and thermoelectric characteristics of XTaO 3 (X = Rb, Fr) ternary perovskite oxides for optoelectronic applications. Int J Energy Res 45:2753–2765. https://doi.org/10.1002/er.5968

    Article  CAS  Google Scholar 

  45. Hussain MI, Khalil RMA, Hussain F et al (2020) Investigations of structural, electronic and optical properties of TM-GaO 3 (TM = Sc, Ti, Ag) perovskite oxides for optoelectronic applications: a first principles study. Mater Res Express 7:015906. https://doi.org/10.1088/2053-1591/ab619c

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors confirm that the study was conducted in an ethical and responsible manner. A part of this work was granted access to the HPC ressources of UCI-UFMC (Unité de Calcul intensif of the University FRERES MENTOURI CONSTANTINE1).

Funding

The authors, A. T. and A. M., are affiliated with Constantine 1-Freres Mentouri University, Algeria. The authors declare that this research was conducted for academic purposes and was not influenced by any external funding or organization.

Author information

Authors and Affiliations

Authors

Contributions

A. T and A. M. contribute equally in this paper.

Corresponding author

Correspondence to Amor Toumiat.

Ethics declarations

Ethical approval

The authors declare that they followed all ethical guidelines while conducting the research and preparing the manuscript. The authors declare that the research work presented in this paper is original.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1084 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toumiat, A., May, A. The FP-LAPW/GAM-MPW1K approach: a reliable abinitio method for calculating the band gap of II-VI semiconductors monochalcogenides. J Mol Model 29, 297 (2023). https://doi.org/10.1007/s00894-023-05696-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05696-0

Keywords

Navigation